Skip to main content
Log in

Study of a near-threshold scalar resonance in the \(\omega \phi \) system in pion-Be interaction at momentum of 29 GeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The charge-exchange reaction \(\pi ^- \text {Be} \rightarrow \text {A}\,\omega (782)\phi (1020)\) with \(\omega \rightarrow \pi ^+\pi ^-\pi ^0\) and \(\phi \rightarrow K^+K^-\) is studied with the upgraded VES facility (U-70, Protvino) using a 29 GeV pion beam. The distribution of the \(\omega \phi \) invariant mass shows a near-threshold enhancement. Partial-wave analysis reveals that an isoscalar scalar state with \(J^{PC}=0^{++}\) dominates in this mass region. Considering the observed signal as an \(f_0\) resonance, and using the one-pion-exchange model, the product of the branching fractions into two channels \(Br(f_0\rightarrow \pi \pi ) Br(f_0\rightarrow \omega \phi )\) is measured. Based on this value, a large partial width is found for the radiative decay of \(J/\psi \) into this state, which suggests a significant glueball component. The result is discussed under alternative assumptions concerning an identification of the observed signal as \(f_0(1710)\) or \(f_0(1770)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availibility statement

Data will be made available on reasonable request. [Author’s comment: The datasets analysed during the current study are not currently available due to technical constraints. The data obtained in the study are available from the corresponding author upon reasonable request.]

Code availability statement

This manuscript has no associated code/software. [Author’s comment: No relevant code or software was generated during the course of the study.]

Notes

  1. Here, \(|t |_\text {min}\) is the minimum value of \(|t |\).

References

  1. R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083–01 (2022). https://doi.org/10.1093/ptep/ptac097

    Article  Google Scholar 

  2. D.V. Bugg et al., Further amplitude analysis of \(J/\psi \rightarrow \gamma (\pi ^+\pi ^-\pi ^+\pi ^-)\). Phys. Lett. B 353, 378–384 (1995). https://doi.org/10.1016/0370-2693(95)00525-P

    Article  ADS  Google Scholar 

  3. J.Z. Bai et al., Partial wave analyses of \(J / \psi \rightarrow \gamma K^+ K^-\) and \(\gamma K^0(S) K^0(S)\). Phys. Rev. D 68, 052003 (2003). https://doi.org/10.1103/PhysRevD.68.052003

    Article  ADS  Google Scholar 

  4. M. Ablikim et al., Amplitude analysis of the \(K_{S}K_{S}\) system produced in radiative \(J/\psi \) decays. Phys. Rev D 98, 072003 (2018). https://doi.org/10.1103/PhysRevD.98.072003

    Article  ADS  Google Scholar 

  5. M. Ablikim et al., Partial wave analyses of \(J/\psi \rightarrow \gamma \pi ^+ \pi ^-\) and \(\gamma \pi ^0 \pi ^0\). Phys. Lett. B 642, 441–448 (2006). https://doi.org/10.1016/j.physletb.2006.10.004

    Article  ADS  Google Scholar 

  6. M.Ablikim, et al.: Observation of a near-threshold enhancement in the \(\omega \phi \) mass spectrum from the doubly OZI suppressed decay \(J / \psi \rightarrow \gamma \omega \phi \). Phys. Rev. Lett. 96, 162002 (2006) arXiv:hep-ex/0602031. https://doi.org/10.1103/PhysRevLett.96.162002

  7. M. Ablikim, et al.: Study of the near-threshold \(\omega \)\(\phi \) mass enhancement in doubly OZI-suppressed \(J/\psi \rightarrow \gamma \omega \phi \) decays. Phys. Rev. D 87(3), 032008 (2013) arXiv:1211.5668 [hep-ex]. https://doi.org/10.1103/PhysRevD.87.032008

  8. M. Ablikim, et al.: Pseudoscalar production at \(\omega \omega \) threshold in \(J/\psi \rightarrow \gamma \omega \omega \). Phys. Rev. D 73, 112007 (2006) arXiv:hep-ex/0604045. https://doi.org/10.1103/PhysRevD.73.112007

  9. X.-D. Guo, H.-W. Ke, M.-G. Zhao, L. Tang, X.-Q. Li, Revisiting the determining fraction of glueball component in \(f_0\) mesons via radiative decays of \(J/\psi \). Chin. Phys. C 45(2), 023104 (2021) arXiv:2003.07116 [hep-ph]. https://doi.org/10.1088/1674-1137/abccad

  10. D.V. Bugg, Four sorts of mesons. Phys. Rep. 397, 257 (2004)

    Article  ADS  Google Scholar 

  11. M. Ablikim et al., Amplitude analysis of the \(\pi ^0\pi ^0\) system produced in radiative \(J/\psi \) decays. Phys. Rev. D 92(5), 052003 (2015)

    Article  ADS  Google Scholar 

  12. A.V. Sarantsev, I. Denisenko, U. Thoma, E. Klempt, Scalar isoscalar mesons and the scalar glueball from radiative \(J/\psi \) decays. Phys. Lett. B 816, 136227 (2021) arXiv:2103.09680 [hep-ph]. https://doi.org/10.1016/j.physletb.2021.136227

  13. A. Ivashin et al., Evidence for a scalar meson resonance in the \(\pi ^- p \rightarrow n \omega \phi \) reaction. AIP Conf. Proc. 1257(1), 262–266 (2010). https://doi.org/10.1063/1.3483329

    Article  ADS  Google Scholar 

  14. D.V. Amelin et al., Resonances in the \(\omega \omega \) system. Phys. Atom. Nucl. 69, 690–698 (2006). https://doi.org/10.1134/S1063778806040132

    Article  ADS  Google Scholar 

  15. S.I. Bityukov et al., Observation of resonance with mass M = 1814 MeV, decaying into \(\pi ^- \eta \eta \). Phys. Lett. B 268, 137–141 (1991). https://doi.org/10.1016/0370-2693(91)90935-J

    Article  ADS  Google Scholar 

  16. M.S. Kholodenko, Particle identification with the Cherenkov detector in the VES experiment. JINST 15(07), 07024 (2020). https://doi.org/10.1088/1748-0221/15/07/C07024

    Article  Google Scholar 

  17. V.A. Dorofeev et al., A new electromagnetic calorimeter for the updated VES setup. Instrum. Exp. Tech. 59(5), 658–665 (2016). https://doi.org/10.1134/S0020441216040175

    Article  Google Scholar 

  18. A.V. Ivashin, Y.A. Khokhlov, V.D. Matveev, Upgraded data acquisition system for the VES setup. Technical aspects. Preprint in Russian at http://web.ihep.su/library/pubs/prep2010/ps/2010-10.pdf (2010)

  19. A.V. Ekimov, et al.: The VES detector control system. Preprint in Russian at http://web.ihep.su/library/pubs/prep2013/ps/2013-2.pdf (2013)

  20. B. Hyams, et al.: t Dependence and Production Mechanisms of the \(\rho \), f and g Resonances from \(\pi ^- p \rightarrow \pi ^- \pi ^+ n\) at 17.2 GeV. Phys. Lett. B 51, 272–278 (1974). https://doi.org/10.1016/0370-2693(74)90290-1

  21. N.N.N.N. Achasov, G.N. Shestakov, \(\pi \pi \) scattering S wave from the data on the reaction \(\pi ^- p \rightarrow \pi ^0 \pi ^0 n\). Phys. Rev. D 67, 114018 (2003). https://doi.org/10.1103/PhysRevD.67.114018

    Article  ADS  Google Scholar 

  22. S.U. Chung, T.L. Trueman, Positivity conditions on the spin-density matrix: A simple parametrization. Phys. Rev. D 11, 633 (1975). https://doi.org/10.1103/PhysRevD.11.633

    Article  ADS  Google Scholar 

  23. K. Gottfried, J.D. Jackson, On the connection between production mechanism and decay of resonances at high energies. Nuovo Cimento 33, 309 (1964). https://doi.org/10.1007/BF02750195

    Article  Google Scholar 

  24. G. Cohen-Tannoudji, P. Salin, A. Morel, A simple formulation of high-energy exchange models in terms of direct-channel amplitudes. Nuovo Cimento A 55, 412–422 (1968). https://doi.org/10.1007/BF02857563

    Article  ADS  Google Scholar 

  25. C. Zemach, Three pion decays of unstable particles. Phys. Rev. 133, 1201 (1964). https://doi.org/10.1103/PhysRev.133.B1201

    Article  ADS  Google Scholar 

  26. S. Agostinelli et al., GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  27. S. Okubo, Phi meson and unitary symmetry model. Phys. Lett. 5, 165–168 (1963). https://doi.org/10.1016/S0375-9601(63)92548-9

    Article  ADS  Google Scholar 

  28. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking I. CERN report TH-401 (1964)

  29. J. Iizuka, Systematics and phenomenology of meson family. Prog. Theor. Phys. Suppl. 38, 21–34 (1966). https://doi.org/10.1143/PTPS.37.21

    Article  ADS  Google Scholar 

  30. V.P. Nomokonov, M.G. Sapozhnikov, Experimental tests of the Okubo–Zweig–Iizuka rule in hadron interactions. Phys. Part. Nucl. 34, 94–123 (2003). arXiv:hep-ph/0204259

    Google Scholar 

  31. N. Isgur, H.B. Thacker, On the origin of the OZI rule in QCD. Phys. Rev. D 64, 094507 (2001). https://doi.org/10.1103/PhysRevD.64.094507

    Article  ADS  Google Scholar 

  32. K.S. Kolbig, B. Margolis, Particle production in nuclei and unstable particle cross-sections. Nucl. Phys. B 6, 85–101 (1968). https://doi.org/10.1016/0550-3213(68)90271-X

    Article  ADS  Google Scholar 

  33. O. Guisan, P. Bonamy, P. Le Du, L. Paul, Study of \(\pi ^- p \rightarrow \pi ^0 n\) and \(\pi ^- p \rightarrow \eta n\) reactions in nuclei at 7.82 GeV/c. Nucl. Phys. B 32, 681–690 (1971). https://doi.org/10.1016/0550-3213(71)90500-1

  34. V.D. Apokin, et al.: Determination of the cross-section of the process \(\pi ^+ \pi ^- \rightarrow \pi ^0 \pi ^0\) in the dipion mass range 0.5 GeV \(<M <2\) GeV from the reaction \(\pi ^- \,p \rightarrow \pi ^0 \pi ^0 \,n\) at 39.1 GeV/c. Sov. J. Nucl. Phys. 49, 278 (1989)

  35. G.F. Chew, F.E. Low, Unstable particles as targets in scattering experiments. Phys. Rev. 113, 1640–1648 (1959). https://doi.org/10.1103/PhysRev.113.1640

    Article  ADS  Google Scholar 

  36. P.K. Williams, Extrapolation model for \(\pi \pi \) scattering. Phys. Rev. D 1, 1312–1318 (1970). https://doi.org/10.1103/PhysRevD.1.1312

    Article  ADS  Google Scholar 

  37. L.-C. Gui, Y. Chen, G. Li, C. Liu, Y.-B. Liu, J.-P. Ma, Y.-B. Yang, J.-B. Zhang, Scalar Glueball in Radiative \(J/\psi \) Decay on the Lattice. Phys. Rev. Lett. 110(2), 021601 (2013) arXiv:1206.0125 [hep-lat]. https://doi.org/10.1103/PhysRevLett.110.021601

  38. F.E. Close, G.R. Farrar, Z. Li, Determining the gluonic content of isoscalar mesons. Phys. Rev. D 55, 5749–5766 (1997) arXiv:hep-ph/9610280. https://doi.org/10.1103/PhysRevD.55.5749

Download references

Acknowledgements

This work was done with the use of the IHEP (Protvino) Central Linux Cluster. The work is partially supported with the RFBR Grant 20-02-00246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Khokhlov.

Additional information

Communicated by Klaus Peters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeev, V.A., Eremeev, D.R., Gotman, V.G. et al. Study of a near-threshold scalar resonance in the \(\omega \phi \) system in pion-Be interaction at momentum of 29 GeV. Eur. Phys. J. A 60, 105 (2024). https://doi.org/10.1140/epja/s10050-024-01307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01307-5

Navigation