Skip to main content
Log in

Improved formulas of spontaneous fission half-lives for heavy and superheavy nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Spontaneous fission is important for the research of heavy and superheavy nuclei. However, the accurate calculation of spontaneous fission half-lives remains an open problem in nuclear physics. In this work, we propose an improved formula for even-even nuclei based on the previous law of spontaneous fission half-lives [C. Xu et al., Phys. Rev. C 71, 014309 (2005)]. The average deviation is 0.98 for 42 even-even nuclei, which is reduced by 39.27% in orders of magnitude compared to that calculated using the previous formula. Then, we further extend the improved formula to calculate the half-lives for odd-A and odd-odd nuclei by incorporating either a blocking factor or generalized seniority to include the blocking effect on the spontaneous fission half-lives [Z. Ren et al., Nucl. Phys. A 759, 64 (2005)]. The experimental half-lives can be reasonably reproduced using the two improved formulas, with average deviations of 1.50 and 1.37 for 79 nuclei, respectively. These results demonstrate that the improved formulas are reliable for the calculations of spontaneous fission half-lives. Finally, we predict the spontaneous fission half-lives for some nuclei on the \( \alpha \)-decay chains of \( ^{293, 294} \)119 and \( ^{294, 295} \)120. The calculated results can be helpful in future research on spontaneous fission and the synthesis experiments of new elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability of statementt

My manuscript has no associated data. [Authors’ comment: xxx].

References

  1. S.A. Giuliani, Z. Matheson, W. Nazarewicz et al., Rev. Mod. Phys. 91, 011001 (2019)

    ADS  Google Scholar 

  2. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Google Scholar 

  3. Flerov and Petrjak, Phys. Rev. 58, 89 (1940)

  4. D. Peterson, B.B. Back, R.V.F. Janssens et al., Phys. Rev. C 74, 014316 (2006)

    ADS  Google Scholar 

  5. Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev et al., Phys. Rev. C 72, 034611 (2005)

  6. Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey et al., Phys. Rev. C 83, 054315 (2011)

  7. V. K. Utyonkov, N. T. Brewer, Yu. Ts. Oganessian et al., Phys. Rev. C 97, 014320 (2018)

  8. A. Såmark-Roth, D.M. Cox, D. Rudolph et al., Phys. Rev. Lett. 126, 032503 (2021)

    ADS  Google Scholar 

  9. Yu. Ts. Oganessian, V. K. Utyonkov, N. D. Kovrizhnykh et al., Phys. Rev. C 106, 064306 (2022)

  10. Yu. Ts. Oganessian, J. Phys. G 34, R165 (2007)

  11. D. Bai, Z. Ren, G. Röpke, Phys. Rev. C 99, 034305 (2019)

    ADS  Google Scholar 

  12. Z.Y. Zhang, H.B. Yang, M.H. Huang et al., Phys. Rev. Lett. 126, 152502 (2021)

    ADS  Google Scholar 

  13. H.B. Yang, Z.G. Gan, Z.Y. Zhang et al., Phys. Rev. C 105, L051302 (2022)

    ADS  Google Scholar 

  14. Z. Wang, Z. Ren, Phys. Rev. C 106, 024311 (2022)

    ADS  Google Scholar 

  15. M.H. Huang, Z.G. Gan, Z.Y. Zhang et al., Phys. Lett. B 834, 137484 (2022)

    Google Scholar 

  16. L. Wang, Q. Niu, J. Zhang et al., Sci. China Phys. Mech. Astron. 66, 102011 (2023)

    ADS  Google Scholar 

  17. F.P. Heßberger, Eur. Phys. J. A 53, 75 (2017)

    ADS  Google Scholar 

  18. C. Xu, Z. Ren, Y. Guo, Phys. Rev. C 78, 044329 (2008)

    ADS  Google Scholar 

  19. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission (Springer, New York, 2012)

    Google Scholar 

  20. G. Gamow, Z. Phys. 51, 204 (1928)

    ADS  Google Scholar 

  21. N. Schunck, D. Regnier, Prog. Part. Nucl. Phys. 125, 103963 (2022)

    Google Scholar 

  22. J.M. Blanco, A. Dobrowolski, A. Zdeb et al., Phys. Rev. C 108, 044618 (2023)

    ADS  Google Scholar 

  23. A. Staszczak, A. Baran, W. Nazarewicz, Phys. Rev. C 87, 024320 (2013)

    ADS  Google Scholar 

  24. J. Sadhukhan, J. Dobaczewski, W. Nazarewicz et al., Phys. Rev. C 90, 061304 (2014)

    ADS  Google Scholar 

  25. A. Baran, M. Kowal, P.G. Reinhard et al., Nucl. Phys. A 944, 442 (2015)

    ADS  Google Scholar 

  26. J. Zhao, B.N. Lu, T. Niksic et al., Phys. Rev. C 93, 044315 (2016)

    ADS  Google Scholar 

  27. S.A. Giuliani, G. Martinez-Pinedo, L.M. Robledo, Phys. Rev. C 97, 034323 (2018)

    ADS  Google Scholar 

  28. G.G. Adamian, N.V. Antonenko, H. Lenske et al., Eur. Phys. J. A 57, 89 (2021)

    ADS  Google Scholar 

  29. G.A. Lalazissis, M.M. Sharma, P. Ring et al., Nucl. Phys. A 608, 202 (1996)

    ADS  Google Scholar 

  30. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)

    ADS  Google Scholar 

  31. R.D. Herzberg, J. Phys. G 30, R123 (2004)

    Google Scholar 

  32. L. Guo, F. Sakata, E.G. Zhao, Phys. Rev. C 71, 024315 (2005)

    ADS  Google Scholar 

  33. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 85, 024314 (2012)

    ADS  Google Scholar 

  34. J. Pei, G. Fann, R. Harrison et al., Phys. Rev. C 90, 024317 (2014)

    ADS  Google Scholar 

  35. C. Xu, Z. Ren, Phys. Rev. C 71, 014309 (2005)

    ADS  Google Scholar 

  36. W.J. Swiatecki, Phys. Rev. 100, 937 (1955)

    ADS  Google Scholar 

  37. Z. Ren, C. Xu, Nucl. Phys. A 759, 64 (2005)

    ADS  Google Scholar 

  38. Y. Qian, Z. Ren, Phys. Rev. C 90, 064308 (2014)

    ADS  Google Scholar 

  39. X.J. Bao, S.Q. Guo, H.F. Zhang et al., J. Phys. G 42, 085101 (2015)

    ADS  Google Scholar 

  40. K.P. Santhosh, C. Nithya, Phys. Rev. C 94, 054621 (2016)

    ADS  Google Scholar 

  41. F.G. Kondev, M. Wang, W.J. Huang et al., Chin. Phys. C 45, 030001 (2021)

    ADS  Google Scholar 

  42. T. Dong, Z. Ren, Phys. Rev. C 72, 064331 (2005)

    ADS  Google Scholar 

  43. T. Dong, Z. Ren, Phys. Rev. C 77, 064310 (2008)

    ADS  Google Scholar 

  44. D.N. Poenaru, I.H. Plonski, W. Greiner, Phys. Rev. C 74, 014312 (2006)

    ADS  Google Scholar 

  45. M. Ismail, A.Y. Ellithi, M.M. Botros et al., Phys. Rev. C 81, 024602 (2010)

    ADS  Google Scholar 

  46. D. Bai, Z. Ren, Eur. Phys. J. A 54, 220 (2018)

  47. Z. Wang, Z. Ren, D. Bai, Phys. Rev. C 101, 054310 (2020)

    ADS  Google Scholar 

  48. Z. Yuan, D. Bai, Z. Ren et al., Chin. Phys. C 46, 024101 (2022)

    ADS  Google Scholar 

  49. D. Ni, Z. Ren, Phys. Rev. C 87, 027602 (2013)

    ADS  Google Scholar 

  50. T. Niwase, Y.X. Watanabe, Y. Hirayama et al., Phys. Rev. Lett. 130, 132502 (2023)

    ADS  Google Scholar 

  51. Z. Ren, C. Xu, Z. Wang, Phys. Rev. C 70, 034304 (2004)

    ADS  Google Scholar 

  52. D. Ni, Z. Ren, T. Dong et al., Phys. Rev. C 78, 044310 (2008)

    ADS  Google Scholar 

  53. P. Möller, J.R. Nix, W.J. Swiatecki, Nucl. Phys. A 492, 349 (1989)

    ADS  Google Scholar 

  54. Z. Yuan, D. Bai, Z. Wang et al., Sci. China Phys. Mech. Astron. 66, 222012 (2023)

    ADS  Google Scholar 

  55. J. Liu, Z. Wang, H. Zhang et al., Chin. Phys. C 48, 014105 (2024)

    ADS  Google Scholar 

  56. C. Qi, J. Phys. G 42, 045104 (2015)

  57. M. Rouaud, Probability, Statistics and Estimation: Propagation of Uncertainties in Experimental Measurement (Lulu Press, USA, 2013)

    Google Scholar 

  58. Z. Wang, Z. Ren, Phys. Rev. C 108, 024306 (2023)

  59. Y. Gao, J. Dobaczewski, M. Kortelainen et al., Phys. Rev. C 87, 034324 (2013)

    ADS  Google Scholar 

  60. A. Soylu, C. Qi, Nucl. Phys. A 1013, 122221 (2021)

    Google Scholar 

  61. T. Dong, Z. Ren, Phys. Rev. C 82, 034320 (2010)

    ADS  Google Scholar 

  62. B.M. Kayumov, O.K. Ganiev, A.K. Nasirov et al., Phys. Rev. C 105, 014618 (2022)

    ADS  Google Scholar 

  63. M. Wang, W.J. Huang, F.G. Kondev et al., Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  64. Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China (Contract No. 2023YFA1606503), and by the National Natural Science Foundation of China (Grants No. 12035011, No. 11975167, No. 11947211, No. 11905103, No. 11881240623, and No. 11961141003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhou Ren.

Additional information

Communicated by Cedric Simenel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Bai, D., Wang, Z. et al. Improved formulas of spontaneous fission half-lives for heavy and superheavy nuclei. Eur. Phys. J. A 60, 68 (2024). https://doi.org/10.1140/epja/s10050-024-01280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01280-z

Navigation