Skip to main content
Log in

Generalized parton distributions for the lowest-lying octet baryons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present a study of the internal structure of lowest-lying octet baryons using one-loop quantum fluctuations of a fermion state in Yukawa theory. Employing a quark-scalar diquark model, we compute the Generalized Parton Distributions (GPDs) for the various members of the octet baryon differing by their amount of strange content. Different possible combinations of quark-scalar diquark pairs have been considered. The quark helicity independent chiral even GPDs in momentum as well as impact parameter space have been studied for purely transverse momentum transfer (zero skewness). We have also extended our calculations to explore and visualize the distinct behavior of charge distributions in coordinate space as well as charge densities in impact parameter space. Furthermore, magnetization density in impact parameter space has also been investigated. Quantitative as well as qualitative analysis of all the distributions has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. S.J. Brodsky, G.P. Lepage, Adv. Ser. Direct. High Energy Phys. 5, 93–240 (1989)

    ADS  Google Scholar 

  2. G.F. Sterman, P. Stoler, Ann. Rev. Nucl. Part. Sci. 47, 193–233 (1997)

    CAS  ADS  Google Scholar 

  3. O. Gayou et al., [Jefferson Lab Hall A]. Phys. Rev. Lett. 88, 092301 (2002)

    CAS  PubMed  ADS  Google Scholar 

  4. D.T. Spayde et al., [SAMPLE]. Phys. Lett. B 583, 79–86 (2004)

    CAS  ADS  Google Scholar 

  5. V. Punjabi, C.F. Perdrisat, K.A. Aniol, F.T. Baker, J. Berthot, P.Y. Bertin, W. Bertozzi, A. Besson, L. Bimbot, W.U. Boeglin et al., Phys. Rev. C 71, 055202 (2005). ([erratum: Phys. Rev. C 71, 069902 (2005)])

    ADS  Google Scholar 

  6. E. Leader, A.V. Sidorov, D.B. Stamenov, Sci. Cult. Ser. Phys. 21, 608–611 (2002)

    CAS  Google Scholar 

  7. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    CAS  ADS  Google Scholar 

  8. O. Gayou, K. Wijesooriya, A. Afanasev, M. Amarian, K. Aniol, S. Becher, K. Benslama, L. Bimbot, P. Bosted, E. Brash et al., Phys. Rev. C 64, 038202 (2001)

    ADS  Google Scholar 

  9. G. Altarelli, G. Preparata, Phys. Lett. B 39, 371–374 (1972)

    CAS  ADS  Google Scholar 

  10. S. Meissner, A. Metz, M. Schlegel, A.I.P. Conf. Proc. 1149, 539–542 (2009)

    ADS  Google Scholar 

  11. V. Barone, A. Drago, P.G. Ratcliffe, Phys. Rep. 359, 1–168 (2002)

    CAS  ADS  Google Scholar 

  12. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197–237 (1996)

    ADS  Google Scholar 

  13. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Fortsch. Phys. 42, 101–141 (1994)

    ADS  Google Scholar 

  14. X.D. Ji, Phys. Rev. Lett. 78, 610–613 (1997)

    CAS  ADS  Google Scholar 

  15. A.V. Radyushkin, Phys. Lett. B 380, 417–425 (1996)

    CAS  ADS  Google Scholar 

  16. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401–515 (2001)

    CAS  ADS  Google Scholar 

  17. X. Ji, Ann. Rev. Nucl. Part. Sci. 54, 413–450 (2004)

    CAS  ADS  Google Scholar 

  18. M. Diehl, Phys. Rep. 388, 41–277 (2003)

    CAS  ADS  Google Scholar 

  19. B. Geyer, D. Robaschik, M. Bordag, J. Horejsi, Z. Phys. C 26, 591–600 (1985)

    MathSciNet  CAS  ADS  Google Scholar 

  20. T. Braunschweig, B. Geyer, J. Horejsi, D. Robaschik, Z. Phys. C 33, 275 (1986)

    CAS  ADS  Google Scholar 

  21. F.M. Dittes, D. Mueller, D. Robaschik, B. Geyer, J. Horejsi, Phys. Lett. B 209, 325–329 (1988)

    CAS  ADS  Google Scholar 

  22. J. Bartels, M. Loewe, Z. Phys. C 12, 263 (1982)

    CAS  ADS  Google Scholar 

  23. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982–3006 (1997)

    CAS  ADS  Google Scholar 

  24. J. Blumlein, B. Geyer, D. Robaschik, Phys. Lett. B 406, 161–170 (1997)

    ADS  Google Scholar 

  25. J. Blumlein, B. Geyer, D. Robaschik, Nucl. Phys. B 560, 283–344 (1999)

    ADS  Google Scholar 

  26. A.V. Radyushkin, Phys. Lett. B 385, 333–342 (1996)

    CAS  ADS  Google Scholar 

  27. M. Burkardt, Phys. Rev. D 62, 071503 (2000). ([erratum: Phys. Rev. D 66, 119903 (2002)])

    ADS  Google Scholar 

  28. J.C. Collins, A. Freund, Phys. Rev. D 59, 074009 (1999)

    ADS  Google Scholar 

  29. O. Bessidskaia Bylund, M. Defurne, P.A.M. Guichon, Phys. Rev. D 107, 014020 (2023)

    CAS  ADS  Google Scholar 

  30. V.M. Braun, Y. Ji, A.N. Manashov, JHEP 01, 078 (2023)

    ADS  Google Scholar 

  31. S. Diehl et al., [CLAS]. Phys. Lett. B 839, 137761 (2023)

    CAS  Google Scholar 

  32. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367–384 (2008)

    CAS  ADS  Google Scholar 

  33. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999)

    ADS  Google Scholar 

  34. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 42, 281–301 (2005)

    CAS  ADS  Google Scholar 

  35. S. Boffi, B. Pasquini, Riv. Nuovo Cim. 30, 387–448 (2007)

    CAS  ADS  Google Scholar 

  36. G.A. Miller, Ann. Rev. Nucl. Part. Sci. 60, 1–25 (2010)

    CAS  ADS  Google Scholar 

  37. A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1–387 (2005)

    CAS  ADS  Google Scholar 

  38. O.V. Selyugin, O.V. Teryaev, Phys. Rev. D 79, 033003 (2009)

    ADS  Google Scholar 

  39. N. Kumar, H. Dahiya, Phys. Rev. D 90, 094030 (2014)

    ADS  Google Scholar 

  40. S. Sharma, N. Kumar, H. Dahiya, Nucl. Phys. B 992, 116247 (2023)

    CAS  Google Scholar 

  41. S. Sharma, H. Dahiya, Int. J. Mod. Phys. A 37, 2250205 (2022)

    CAS  ADS  Google Scholar 

  42. D. Djukanovic, G. von Hippel, H.B. Meyer, K. Ottnad, M. Salg, H. Wittig, [arXiv:2309.06590 [hep-lat]]

  43. C. Liang, Y. Dong, W. Liang, Commun. Theor. Phys. 62, 383–387 (2014)

    CAS  ADS  Google Scholar 

  44. M.N. Achasov et al. [SND], [arXiv:2309.05241 [hep-ex]]

  45. C. Riedl, Sci. Post Phys. Proc. 8, 002 (2022)

    CAS  Google Scholar 

  46. A. Airapetian et al., [HERMES]. Phys. Rev. Lett. 87, 182001 (2001)

    ADS  Google Scholar 

  47. A. Ali et al., [GlueX]. Phys. Rev. Lett. 123, 072001 (2019)

    CAS  PubMed  ADS  Google Scholar 

  48. D.E. Kharzeev, Phys. Rev. D 104, 054015 (2021)

    MathSciNet  CAS  ADS  Google Scholar 

  49. C. Riedl, arXiv:2204.03684 [hep-ex]

  50. R. Dupré, M. Guidal, S. Niccolai, M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

    ADS  Google Scholar 

  51. P. Achenbach, D. Adhikari, A. Afanasev, F. Afzal, C.A. Aidala, A. Al-bataineh, D.K. Almaalol, M. Amaryan, D. Androic, W.R. Armstrong, et al. [arXiv:2303.02579 [hep-ph]]

  52. H. Moutarde, P. Sznajder, J. Wagner, Eur. Phys. J. C 79, 614 (2019)

    ADS  Google Scholar 

  53. H.W. Lin, Phys. Lett. B 824, 136821 (2022)

    CAS  Google Scholar 

  54. S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, A. Metz, A. Scapellato, F. Steffens, Phys. Rev. D 108, 054501 (2023)

    CAS  ADS  Google Scholar 

  55. S. Kaur, S. Xu, C. Mondal, X. Zhao, J.P. Vary, [arXiv:2307.09869 [hep-ph]]

  56. Y. Guo, X. Ji, M.G. Santiago, K. Shiells, J. Yang, JHEP 05, 150 (2023)

    ADS  Google Scholar 

  57. Z. Lu, I. Schmidt, Phys. Rev. D 82, 094005 (2010)

    ADS  Google Scholar 

  58. C. Lorce, B. Pasquini, M. Vanderhaeghen, JHEP 05, 041 (2011)

  59. A. Freese, I.C. Cloët, Phys. Rev. C 103, 045204 (2021)

    CAS  ADS  Google Scholar 

  60. Z. Zhu et al., BLFQ. Phys. Rev. D 108, 036009 (2023)

    CAS  ADS  Google Scholar 

  61. J. Zhang, B.Q. Ma, Phys. Rev. C 93, 065209 (2016)

    ADS  Google Scholar 

  62. H. Dahiya, Phys. Rev. D 91, 094010 (2015)

    ADS  Google Scholar 

  63. P. Wang, S. Lawley, D.B. Leinweber, A.W. Thomas, A.G. Williams, Phys. Rev. C 72, 045801 (2005)

    ADS  Google Scholar 

  64. I. Vidaña, Proc. Roy. Soc. Lond. A 474, 0145 (2018)

    Google Scholar 

  65. A. Feliciello, T. Nagae, Rept. Prog. Phys. 78, 096301 (2015)

    CAS  ADS  Google Scholar 

  66. D.S. Hwang, D. Mueller, Phys. Lett. B 660, 350–359 (2008)

    CAS  ADS  Google Scholar 

  67. S.J. Brodsky, Nucl. Phys. B, Proc. Suppl. 90, 3–13 (2000)

    MathSciNet  CAS  ADS  Google Scholar 

  68. S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99–124 (2001)

    ADS  Google Scholar 

  69. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99–107 (2002)

    CAS  ADS  Google Scholar 

  70. S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Nucl. Phys. B 593, 311–335 (2001)

    ADS  Google Scholar 

  71. P.A.M. Dirac, Rev. Mod. Phys. 21, 392–399 (1949)

    ADS  Google Scholar 

  72. S. Meissner, A. Metz, M. Schlegel, JHEP 08, 056 (2009)

    ADS  Google Scholar 

  73. D. Chakrabarti, C. Mondal, Phys. Rev. D 88, 073006 (2013)

    ADS  Google Scholar 

  74. M. Burkardt, Nucl. Phys. B Proc. Suppl. 90, 100–105 (2000)

    CAS  ADS  Google Scholar 

  75. M. Burkardt, Int. J. Mod. Phys. A 18, 173–208 (2003)

    ADS  Google Scholar 

  76. T. Maji, C. Mondal, D. Chakrabarti, Phys. Rev. D 96, 013006 (2017)

    ADS  Google Scholar 

  77. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Prog. Part. Nucl. Phys. 67, 206–211 (2012)

    CAS  ADS  Google Scholar 

  78. S.J. Brodsky, D.S. Hwang, Nucl. Phys. B 543, 239–252 (1999)

    ADS  Google Scholar 

  79. R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626, 937–965 (1997)

    ADS  Google Scholar 

  80. D.S. Kim, D.S. Hwang, J. Kim, Phys. Lett. B 669, 345–351 (2008)

    ADS  Google Scholar 

  81. G.A. Miller, Phys. Rev. Lett. 99, 112001 (2007)

    PubMed  ADS  Google Scholar 

  82. G.A. Miller, J. Arrington, Phys. Rev. C 78, 032201 (2008)

    ADS  Google Scholar 

  83. Y. Guo, X. Ji, K. Shiells, Nucl. Phys. B 969, 115440 (2021)

    CAS  Google Scholar 

  84. X. Ji, F. Yuan, Phys. Lett. B 810, 135786 (2020)

    MathSciNet  CAS  Google Scholar 

  85. A. Accardi, P. Achenbach, D. Adhikari, A. Afanasev, C.S. Akondi, N. Akopov, M. Albaladejo, H. Albataineh, M. Albrecht, B. Almeida-Zamora, et al. [arXiv:2306.09360 [nucl-ex]]

Download references

Acknowledgements

H.D. would like to thank the Science and Engineering Research Board, Department of Science and Technology, Government of India through the grant (Ref No. TAR/2021/000157) under TARE scheme for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harleen Dahiya.

Additional information

Communicated by Carlos Munoz Camacho

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Dahiya, H. Generalized parton distributions for the lowest-lying octet baryons. Eur. Phys. J. A 60, 42 (2024). https://doi.org/10.1140/epja/s10050-024-01265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01265-y

Navigation