Skip to main content
Log in

15 years of precision mass measurements at TITAN

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Atomic masses represent key ingredients to understand the structure of atomic nuclei. In particular, they provide insights into the nuclear binding energy and, thus, into the combined forces that govern the stability of atomic nuclei. Given their high experimental precision and accuracy, these observables serve as stringent benchmarks for modern nuclear theory and are critical input for nuclear astrophysics and tests of fundamental symmetries. Here, we review the current status of precision atomic mass measurements, with a focus on short-lived radioactive species and relevant techniques employed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). Coupled to the ISAC facility, TITAN has been in operation since 2007. Over the years, it has evolved in its capabilities, taking advantage of its unique combination of ion traps, including Paul traps, an electron beam ion trap (EBIT), a Penning trap, and most recently, an electrostatic multiple-reflection time-of-flight (MR-TOF) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This review article discusses 15 years of TITAN operation. It does not contain any new, original physics data.]

References

  1. M.G. Mayer, The shell model. Science 145(3636), 999–1006 (1964). https://doi.org/10.1126/science.145.3636.999

    Article  ADS  Google Scholar 

  2. K. Blaum, J. Dilling, W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scr. 2013(T152), 014017 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014017

    Article  Google Scholar 

  3. Y. Blumenfeld, T. Nilsson, P.V. Duppen, Facilities and methods for radioactive ion beam production. Phys. Scr. 2013(T152), 014023 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014023

    Article  Google Scholar 

  4. H.-J. Kluge, Precision measurements of masses of radioactive atoms using isolde and ion traps. Phys. Scr. 1988(T22), 85 (1988). https://doi.org/10.1088/0031-8949/1988/T22/012

    Article  Google Scholar 

  5. H. Stolzenberg, S. Becker, G. Bollen, F. Kern, H.-J. Kluge, T. Otto, G. Savard, L. Schweikhard, G. Audi, R.B. Moore, Accurate mass determination of short-lived isotopes by a tandem penning-trap mass spectrometer. Phys. Rev. Lett. 65, 3104–3107 (1990). https://doi.org/10.1103/PhysRevLett.65.3104

    Article  ADS  Google Scholar 

  6. J. Dilling, K. Blaum, M. Brodeur, S. Eliseev, Penning-trap mass measurements in atomic and nuclear physics. Annu. Rev. Nucl. Part. Sci. 68, 45–74 (2018). https://doi.org/10.1146/annurev-nucl-102711-094939

    Article  ADS  Google Scholar 

  7. L. Nies, D. Atanasov, M. Athanasakis-Kaklamanakis, M. Au, K. Blaum, J. Dobaczewski, B.S. Hu, J.D. Holt, J. Karthein, I. Kulikov, Y.A. Litvinov, D. Lunney, V. Manea, T. Miyagi, M. Mougeot, L. Schweikhard, A. Schwenk, K. Sieja, F. Wienholtz, Isomeric excitation energy for \(^{99}{{\rm In}}^{m}\) from mass spectrometry reveals constant trend next to doubly magic \(^{100}{\rm Sn}\). Phys. Rev. Lett. 131, 022502 (2023). https://doi.org/10.1103/PhysRevLett.131.022502

  8. E.M. Lykiardopoulou, G. Audi, T. Dickel, W.J. Huang, D. Lunney, W.R. Plaß, M.P. Reiter, J. Dilling, A.A. Kwiatkowski, Exploring the limits of existence of proton-rich nuclei in the \(z=70-82\) region. Phys. Rev. C 107, 024311 (2023). https://doi.org/10.1103/PhysRevC.107.024311

    Article  ADS  Google Scholar 

  9. P. Ascher, L. Daudin, M. Flayol, M. Gerbaux, S. Grévy, M. Hukkanen, A. Husson, A. de Roubin, P. Alfaurt, B. Blank, K. Blaum, B. Lachacinski, D. Lunney, E.M. Ramirez, S. Naimi, S. Perard, B. Thomas, Piperade: a double penning trap for mass separation and mass spectrometry at desir/spiral2. Nucl. Instrum. Methods Phys. Res. Sect. A 1019, 165857 (2021). https://doi.org/10.1016/j.nima.2021.165857

  10. P. Chauveau, P. Delahaye, G. De France, S. El Abir, J. Lory, Y. Merrer, M. Rosenbusch, L. Schweikhard, R.N. Wolf, Pilgrim, a multi-reflection time-of-flight mass spectrometer for spiral2-s3 at ganil. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 376, 211–215 (2016). https://doi.org/10.1016/j.nimb.2016.01.025. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, 11–15 May 2015

  11. M. Hukkanen, W. Ryssens, P. Ascher, M. Bender, T. Eronen, S. Grévy, A. Kankainen, M. Stryjczyk, L. Al Ayoubi, S. Ayet, O. Beliuskina, C. Delafosse, W. Gins, M. Gerbaux, A. Husson, A. Jokinen, D.A. Nesterenko, I. Pohjalainen, M. Reponen, S. Rinta-Antila, A. de Roubin, A.P. Weaver, Odd-odd neutron-rich rhodium isotopes studied with the double penning trap jyfltrap. Phys. Rev. C 107, 014306 (2023). https://doi.org/10.1103/PhysRevC.107.014306

  12. P.D. Shidling, M. Mehlman, V.S. Kolhinen, G. Chubarian, L. Cooper, G. Duran, E. Gilg, V.E. Iacob, K.S. Marble, R. McAfee, D. McClain, M. McDonough, M. Nasser, C. Gonzalez-Ortiz, A. Ozmetin, B. Schroeder, M. Soulard, G. Tabacaru, D. Melconian, The TAMUTRAP facility: a Penning trap facility at Texas A &M University for weak interaction studies. Int. J. Mass Spectrom. 468, 116636 (2021). https://doi.org/10.1016/j.ijms.2021.116636

    Article  Google Scholar 

  13. J. Grund, M. Asai, K. Blaum, M. Block, S. Chenmarev, C.E. Düllmann, K. Eberhardt, S. Lohse, Y. Nagame, S. Nagy, P. Naubereit, J.J.W. van de Laar, F. Schneider, T.K. Sato, N. Sato, D. Simonovski, K. Tsukada, K. Wendt, First online operation of triga-trap. Nucl. Instrum. Methods Phys. Res. Sect. A 972, 164013 (2020). https://doi.org/10.1016/j.nima.2020.164013

  14. R. Orford, N. Vassh, J.A. Clark, G.C. McLaughlin, M.R. Mumpower, D. Ray, G. Savard, R. Surman, F. Buchinger, D.P. Burdette, M.T. Burkey, D.A. Gorelov, J.W. Klimes, W.S. Porter, K.S. Sharma, A.A. Valverde, L. Varriano, X.L. Yan, Searching for the origin of the rare-earth peak with precision mass measurements across ce-eu isotopic chains. Phys. Rev. C 105, 052802 (2022). https://doi.org/10.1103/PhysRevC.105.L052802

    Article  ADS  Google Scholar 

  15. F.G.A. Quarati, G. Bollen, P. Dorenbos, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, D.K. Keblbeck, X. Mougeot, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, J. Surbrook, I. Yandow, Measurements and computational analysis of the natural decay of \(^{176}{{\rm Lu}} \). Phys. Rev. C 107, 024313 (2023). https://doi.org/10.1103/PhysRevC.107.024313

    Article  ADS  Google Scholar 

  16. S. Rausch, M. Horst, Z. Andelkovic, S. Fedotova, W. Geithner, F. Herfurth, D. Neidherr, W. Nörtershäuser, N. Stallkamp, S. Trotsenko, G. Vorobyev, Commissioning of the hitrap cooling trap with offline ions. Atoms 10(4) (2022). https://doi.org/10.3390/atoms10040142

  17. D. Rodríguez, K. Blaum, W. Nörtershäuser, M. Ahammed, A. Algora, G. Audi, J. Äystö, D. Beck, M. Bender, J. Billowes et al., Mats and laspec: high-precision experiments using ion traps and lasers at fair. Eur. Phys. J. Spec. Top. 183, 1–123 (2010)

    Article  Google Scholar 

  18. O. Kaleja, B. AnĐeli ć, O. Bezrodnova, K. Blaum, M. Block, S. Chenmarev, P. Chhetri, C. Droese, C.E. Düllmann, M. Eibach, S. Eliseev, J. Even, P. Filianin, F. Giacoppo, S. Götz, Y. Gusev, M.J. Gutiérrez, F.P. Heßberger, N. Kalantar-Nayestanaki, J.J.W. van de Laar, M. Laatiaoui, S. Lohse, N. Martynova, E. Minaya Ramirez, A.K. Mistry, T. Murböck, Y. Novikov, S. Raeder, D. Rodríguez, F. Schneider, L. Schweikhard, P.G. Thirolf, A. Yakushev, Direct high-precision mass spectrometry of superheavy elements with shiptrap. Phys. Rev. C 106, 054325 (2022). https://doi.org/10.1103/PhysRevC.106.054325

  19. W.X. Huang, Y.L. Tian, J.Y. Wang, Y.L. Sun, Y.S. Wang, Y. Wang, J.M. Zhao, W. Wu, L.Z. Ma, Y. He, H.S. Xu, G.Q. Xiao, Status of Lanzhou Penning Trap for accurate mass measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 317, 528–531 (2013). https://doi.org/10.1016/j.nimb.2013.07.041. XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at Matsue, Japan

  20. J. Du, W. Wu, X. Wu, G. Zhang, Y. Zhao, M. Xiao, Persistent current effects in highly homogeneous superconducting magnets. Phys. C (Amsterdam, Neth.) 599, 1354094 (2022). https://doi.org/10.1016/j.physc.2022.1354094

  21. P. Schury, M. Wada, Y. Ito, F. Arai, S. Naimi, T. Sonoda, H. Wollnik, V.A. Shchepunov, C. Smorra, C. Yuan, A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at riken/slowri. Nucl. Instrum. Methods Phys. Res. Sect. B 335, 39–53 (2014). https://doi.org/10.1016/j.nimb.2014.05.016

  22. ...M. Rosenbusch, M. Wada, S. Chen, A. Takamine, S. Iimura, D. Hou, W. Xian, S. Yan, P. Schury, Y. Hirayama, Y. Ito, H. Ishiyama, S. Kimura, T. Kojima, J. Lee, J. Liu, S. Michimasa, H. Miyatake, J.Y. Moon, M. Mukai, S. Naimi, S. Nishimura, T. Niwase, T. Sonoda, Y.X. Watanabe, H. Wollnik, The new mrtof mass spectrograph following the zerodegree spectrometer at riken’s ribf facility. Nucl. Instrum. Methods Phys. Res. Sect. A 1047, 167824 (2023). https://doi.org/10.1016/j.nima.2022.167824

  23. W.R. Plaß, T. Dickel, S. Purushothaman, P. Dendooven, H. Geissel, J. Ebert, E. Haettner, C. Jesch, M. Ranjan, M.P. Reiter, H. Weick, F. Amjad, S. Ayet, M. Diwisch, A. Estrade, F. Farinon, F. Greiner, N. Kalantar-Nayestanaki, R. Knöbel, J. Kurcewicz, J. Lang, I. Moore, I. Mukha, C. Nociforo, M. Petrick, M. Pfützner, S. Pietri, A. Prochazka, A.-K. Rink, S. Rinta-Antila, D. Schäfer, C. Scheidenberger, M. Takechi, Y.K. Tanaka, J.S. Winfield, M.I. Yavor, The frs ion catcher—a facility for high-precision experiments with stopped projectile and fission fragments. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 317, 457–462 (2013). https://doi.org/10.1016/j.nimb.2013.07.063. XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at Matsue, Japan

  24. M.I. Yavor, N.R. Gall, M.Z. Muradymov, T.V. Pomozov, I.V. Kurnin, A.G. Monakov, A.N. Arsenev, Y.T. Oganessian, A.V. Karpov, A.M. Rodin, L. Krupa, T. Dickel, W.R. Plaß, C. Scheidenberger, Development of a mass spectrometer for high-precision mass measurements of superheavy elements at jinr. J. Instrum. 17(11), 11033 (2022). https://doi.org/10.1088/1748-0221/17/11/P11033

    Article  Google Scholar 

  25. J. Even, X. Chen, A. Soylu, P. Fischer, A. Karpov, V. Saiko, J. Saren, M. Schlaich, T. Schlathölter, L. Schweikhard, J. Uusitalo, F. Wienholtz, The next project: towards production and investigation of neutron-rich heavy nuclides. Atoms 10(2) (2022). https://doi.org/10.3390/atoms10020059

  26. G.C. Ball, G. Hackman, R. Krücken, The TRIUMF-ISAC facility: two decades of discovery with rare isotope beams. Phys. Scr. 91(9), 093002 (2016). https://doi.org/10.1088/0031-8949/91/9/093002

    Article  ADS  Google Scholar 

  27. Z. Yao, Z. Ang, T. Au, K. Fong, X. Fu, J. Keir, P. Kolb, D. Lang, R. Laxdal, R. Leewe et al., Status and challenges at triumf isac facility. Proc. LINAC 22, 866–871 (2022)

    Google Scholar 

  28. P. Kunz, J. Lassen, C. Andreoiu, F.H. Garcia, Transuranium isotopes at isac/triumf. Nucl. Instrum. Methods Phys. Res. Sect. B 534, 90–96 (2023)

  29. A. Laxdal, F. Ames, R. Baartman, I. Bylinskii, E. Klassen, P. Kunz, L. Lambert, R. Laxdal, A. Leung, S. Liu et al., Rotating proton beam for higher rib releases. Nucl. Instrum. Methods Phys. Res., Sect. B 463, 525–527 (2020). https://doi.org/10.1016/j.nimb.2019.03.003

  30. M. Dombsky, P. Kunz, Isac targets. Hyperfine Interact. 225(1–3), 17–23 (2014). https://doi.org/10.1007/s10751-013-0879-5

    Article  ADS  Google Scholar 

  31. J. Dilling, R. Krücken, L. Merminga, In: Dilling, J., Krücken, R., Merminga, L. (eds.) ARIEL overview, pp. 253–262. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7963-1_30

  32. M. Marchetto, F. Ames, R. Baartman, C. Barquest, S. Kiy, T. Planche, S. Saminathan, J.A. Maloney, S. Brown, M. Corwin, D. Sehayek, J. Laroche, Status of the CANREB high-resolution separator at TRIUMF. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 227–231 (2020). https://doi.org/10.1016/j.nimb.2019.05.032

  33. B.E. Schultz, C.R.J. Charles, M. Cavenaile, R. Kanungo, F. Ames, O. Kester, Canreb ebis commissioning at triumf. J. Phys. Conf. Ser. 2244(1), 012028 (2022). https://doi.org/10.1088/1742-6596/2244/1/012028

    Article  Google Scholar 

  34. M. Smith, M. Brodeur, T. Brunner, S. Ettenauer, A. Lapierre, R. Ringle, V.L. Ryjkov, F. Ames, P. Bricault, G.W.F. Drake, P. Delheij, D. Lunney, F. Sarazin, J. Dilling, First penning-trap mass measurement of the exotic halo nucleus \(^{11}\rm Li \). Phys. Rev. Lett. 101, 202501 (2008). https://doi.org/10.1103/PhysRevLett.101.202501

    Article  ADS  Google Scholar 

  35. E. Leistenschneider, M.P. Reiter, S. Ayet San Andrés, B. Kootte, J.D. Holt, P. Navrátil, C. Babcock, C. Barbieri, B.R. Barquest, J. Bergmann, J. Bollig, T. Brunner, E. Dunling, A. Finlay, H. Geissel, L. Graham, F. Greiner, H. Hergert, C. Hornung, C. Jesch, R. Klawitter, Y. Lan, D. Lascar, K.G. Leach, W. Lippert, J.E. McKay, S.F. Paul, A. Schwenk, D. Short, J. Simonis, V. Somà, R. Steinbrügge, S.R. Stroberg, R. Thompson, M.E. Wieser, C. Will, M. Yavor, C. Andreoiu, T. Dickel, I. Dillmann, G. Gwinner, W.R. Plaß, C. Scheidenberger, A.A. Kwiatkowski, J. Dilling, Dawning of the \(N=32\) shell closure seen through precision mass measurements of neutron-rich titanium isotopes. Phys. Rev. Lett. 120, 062503 (2018). https://doi.org/10.1103/PhysRevLett.120.062503

  36. T. Brunner, M.J. Smith, M. Brodeur, S. Ettenauer, A.T. Gallant, V.V. Simon, A. Chaudhuri, A. Lapierre, E. Mané, R. Ringle, M.C. Simon, J.A. Vaz, P. Delheij, M. Good, M.R. Pearson, J. Dilling, TITAN’s digital RFQ ion beam cooler and buncher, operation and performance. Nucl. Instrum. Methods Phys. Res. Sect. A 676, 32–43 (2012). https://doi.org/10.1016/j.nima.2012.02.004

  37. A. Lapierre, M. Brodeur, T. Brunner, S. Ettenauer, A.T. Gallant, V. Simon, M. Good, M.W. Froese, J.R. Crespo López-Urrutia, P. Delheij, S. Epp, R. Ringle, S. Schwarz, J. Ullrich, J. Dilling, The TITAN EBIT charge breeder for mass measurements on highly charged short-lived isotopes-first online operation. Nucl. Instrum. Methods Phys. Res. Sect. A 624(1), 54–64 (2010). https://doi.org/10.1016/j.nima.2010.09.030

  38. M. Brodeur, V.L. Ryjkov, T. Brunner, S. Ettenauer, A.T. Gallant, V.V. Simon, M.J. Smith, A. Lapierre, R. Ringle, P. Delheij, M. Good, D. Lunney, J. Dilling, Verifying the accuracy of the TITAN Penning-trap mass spectrometer. Int. J. Mass Spectrom. 310, 20–31 (2012). https://doi.org/10.1016/j.ijms.2011.11.002

    Article  Google Scholar 

  39. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425(1), 1–78 (2006). https://doi.org/10.1016/j.physrep.2005.10.011

    Article  ADS  Google Scholar 

  40. G. Gräff, H. Kalinowsky, J. Traut, A direct determination of the proton electron mass ratio. Zeitschrift für Physik A At. Nucl. 297(1), 35–39 (1980). https://doi.org/10.1007/BF01414243

    Article  ADS  Google Scholar 

  41. A.G. Marshall, C.L. Hendrickson, G.S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17(1), 1–35 (1998). https://doi.org/10.1146/annurev.anchem.1.031207.112945

    Article  ADS  Google Scholar 

  42. S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013). https://doi.org/10.1103/PhysRevLett.110.082501

  43. R. Ringle, G. Bollen, A. Prinke, J. Savory, P. Schury, S. Schwarz, T. Sun, A “lorentz” steerer for ion injection into a penning trap. Int. J. Mass Spectrom. 263(1), 38–44 (2007). https://doi.org/10.1016/j.ijms.2006.12.008

  44. G. Bollen, R.B. Moore, G. Savard, H. Stolzenberg, The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68(9), 4355–4374 (1990). https://doi.org/10.1063/1.346185

    Article  ADS  Google Scholar 

  45. S. Ettenauer, M.C. Simon, A.T. Gallant, T. Brunner, U. Chowdhury, V.V. Simon, M. Brodeur, A. Chaudhuri, E. Mané, C. Andreoiu, G. Audi, J.R.C. López-Urrutia, P. Delheij, G. Gwinner, A. Lapierre, D. Lunney, M.R. Pearson, R. Ringle, J. Ullrich, J. Dilling, First use of high charge states for mass measurements of short-lived nuclides in a penning trap. Phys. Rev. Lett. 107, 272501 (2011). https://doi.org/10.1103/PhysRevLett.107.272501

    Article  Google Scholar 

  46. S. Ettenauer, M.C. Simon, T.D. Macdonald, J. Dilling, Advances in precision, resolution, and separation techniques with radioactive, highly charged ions for penning trap mass measurements. Int. J. Mass Spectrom. 349–350, 74–80 (2013). https://doi.org/10.1016/j.ijms.2013.04.021. 100 years of Mass Spectrometry

  47. M.C. Simon, T.D. Macdonald, J.C. Bale, U. Chowdhury, B. Eberhardt, M. Eibach, R. Gallino, F. Jang, A. Lennarz, M. Luichtl, T. Ma, D. Robertson, V.V. Simon, C. Andreoiu, M. Brodeur, T. Brunner, A. Chaudhuri, J.R. Crespo Lopez-Urrutia, P. Delheij, S. Ettenauer, D. Frekers, A. Grossheim, G. Gwinner, A.A. Kwiatkowski, A. Lapierre, E. Mane, M.R. Pearson, R. Ringle, B.E. Schultz, J. Dilling, Charge breeding rare isotopes for high precision mass measurements: challenges and opportunities. Phys. Scr. T156, 14098 (2013). https://doi.org/10.1088/0031-8949/2013/T156/014098

  48. A. Müller, E. Salzborn, Scaling of cross sections for multiple electron transfer to highly charged ions colliding with atoms and molecules. Phys. Lett. A 62(6), 391–394 (1977). https://doi.org/10.1016/0375-9601(77)90672-7

    Article  ADS  Google Scholar 

  49. E. Leistenschneider, A.A. Kwiatkowski, J. Dilling, Vacuum requirements for penning trap mass spectrometry with highly charged ions. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 496–498 (2020). https://doi.org/10.1016/j.nimb.2019.03.047

  50. C. Jesch, T. Dickel, W.R. Plaß, D. Short, S. Ayet San Andres, J. Dilling, H. Geissel, F. Greiner, J. Lang, K.G. Leach, W. Lippert, C. Scheidenberger, M.I. Yavor, The mr-tof-ms isobar separator for the titan facility at triumf. Hyperfine Interact. 235(1), 97–106 (2015). https://doi.org/10.1007/s10751-015-1184-2

  51. ...M.P. Reiter, S.A.S. Andrés, J. Bergmann, T. Dickel, J. Dilling, A. Jacobs, A.A. Kwiatkowski, W.R. Plaß, C. Scheidenberger, D. Short, C. Will, C. Babcock, E. Dunling, A. Finlay, C. Hornung, C. Jesch, R. Klawitter, B. Kootte, D. Lascar, E. Leistenschneider, T. Murböck, S.F. Paul, M. Yavor, Commissioning and performance of titan’s multiple-reflection time-of-flight mass-spectrometer and isobar separator. Nucl. Instrum. Methods Phys. Res. Sect. A 1018, 165823 (2021). https://doi.org/10.1016/j.nima.2021.165823

  52. S. Ayet San Andrés, C. Hornung, J. Ebert, W.R. Plaß, T. Dickel, H. Geissel, C. Scheidenberger, J. Bergmann, F. Greiner, E. Haettner, C. Jesch, W. Lippert, I. Mardor, I. Miskun, Z. Patyk, S. Pietri, A. Pihktelev, S. Purushothaman, M.P. Reiter, A.-K. Rink, H. Weick, M.I. Yavor, S. Bagchi, V. Charviakova, P. Constantin, M. Diwisch, A. Finlay, S. Kaur, R. Knöbel, J. Lang, B. Mei, I.D. Moore, J.-H. Otto, I. Pohjalainen, A. Prochazka, C. Rappold, M. Takechi, Y.K. Tanaka, J.S. Winfield, X. Xu, High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states. Phys. Rev. C 99, 064313 (2019). https://doi.org/10.1103/PhysRevC.99.064313

  53. H. Wollnik, M. Przewloka, Time-of-flight mass spectrometers with multiply reflected ion trajectories. Int. J. Mass Spectrom. Ion Process. 96(3), 267–274 (1990). https://doi.org/10.1016/0168-1176(90)85127-N

    Article  ADS  Google Scholar 

  54. M.P. Reiter, F. Ames, C. Andreoiu, S. Ayet San Andrés, C. Babcock, B.R. Barquest, J. Bergmann, J. Bollig, T. Brunner, T. Dickel, J. Dilling, I. Dillmann, E. Dunling, A. Finlay, G. Gwinner, L. Graham, C. Hornung, B. Kootte, R. Klawitter, P. Kunz, Y. Lan, D. Lascar, J. Lassen, E. Leistenschneider, R. Li, J.E. McKay, M. Mostamand, S.F. Paul, W.R. Plaß, C. Scheidenberger, B.E. Schultz, R. Steinbrügge, A. Teigelhoefer, R. Thompson, M.E. Wieser, C. Will, A.A. Kwiatkowski, Improved beam diagnostics and optimization at isac via titan’s mr-tof-ms. Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 463, 431–436 (2020). https://doi.org/10.1016/j.nimb.2019.04.034

  55. W.R. Plass, T. Dickel, U. Czok, H. Geissel, M. Petrick, K. Reinheimer, C. Scheidenberger, M. I.Yavor, Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 266(19-20), 4560–4564 (2008). https://doi.org/10.1016/j.nimb.2008.05.079

  56. N.E. Bradbury, R.A. Nielsen, Absolute values of the electron mobility in hydrogen. Phys. Rev. 49, 388–393 (1936). https://doi.org/10.1103/PhysRev.49.388

    Article  ADS  Google Scholar 

  57. R.N. Wolf, D. Beck, K. Blaum, C. Böhm, C. Borgmann, M. Breitenfeldt, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, K. Zuber, On-line separation of short-lived nuclei by a multi-reflection time-of-flight device. Nucl. Instrum. Methods Phys. Res. Sect. A 686, 82–90 (2012). https://doi.org/10.1016/j.nima.2012.05.067

  58. T. Dickel, W.R. Plaß, S. Ayet San Andres, J. Ebert, H. Geissel, E. Haettner, C. Hornung, I. Miskun, S. Pietri, S. Purushothaman, M.P. Reiter, A.-K. Rink, C. Scheidenberger, H. Weick, P. Dendooven, M. Diwisch, F. Greiner, F. Heiße, R. Knöbel, W. Lippert, I.D. Moore, I. Pohjalainen, A. Prochazka, M. Ranjan, M. Takechi, J.S. Winfield, X. Xu, First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer. Phys. Lett. B 744, 137–141 (2015). https://doi.org/10.1016/j.physletb.2015.03.047

  59. J.T. Johnson, I.J. Carrick, G.S. Eakins, S.A. McLuckey, Mirror switching for high-resolution ion isolation in an electrostatic linear ion trap. Anal. Chem. 91(14), 8789–8794 (2019). https://doi.org/10.1021/acs.analchem.9b00874

    Article  Google Scholar 

  60. F. Wienholtz, S. Kreim, M. Rosenbusch, L. Schweikhard, R.N. Wolf, Mass-selective ion ejection from multi-reflection time-of-flight devices via a pulsed in-trap lift. Int. J. Mass Spectrom. 421, 285–293 (2017). https://doi.org/10.1016/j.ijms.2017.07.016

    Article  Google Scholar 

  61. T. Dickel, W.R. Plass, W. Lippert, J. Lang, M.I. Yavor, H. Geissel, C. Scheidenberger, Isobar separation in a multiple-reflection time-of-flight mass spectrometer by mass-selective re-trapping. J. Am. Soc. Mass Spectrom. 28(6), 1079–1090 (2017). https://doi.org/10.1007/s13361-017-1617-z

    Article  ADS  Google Scholar 

  62. ...W.S. Porter, B. Ashrafkhani, J. Bergmann, C. Brown, T. Brunner, J.D. Cardona, D. Curien, I. Dedes, T. Dickel, J. Dudek, E. Dunling, G. Gwinner, Z. Hockenbery, J.D. Holt, C. Hornung, C. Izzo, A. Jacobs, A. Javaji, B. Kootte, G. Kripkó-Koncz, E.M. Lykiardopoulou, T. Miyagi, I. Mukul, T. Murböck, W.R. Plaß, M.P. Reiter, J. Ringuette, C. Scheidenberger, R. Silwal, C. Walls, H.L. Wang, Y. Wang, J. Yang, J. Dilling, A.A. Kwiatkowski, Mapping the \(N=40\) island of inversion: precision mass measurements of neutron-rich Fe isotopes. Phys. Rev. C 105, 041301 (2022). https://doi.org/10.1103/PhysRevC.105.L041301

  63. M.P. Reiter, K.G. Leach, O.M. Drozdowski, S.R. Stroberg, J.D. Holt, C. Andreoiu, C. Babcock, B. Barquest, M. Brodeur, A. Finlay, M. Foster, A.T. Gallant, G. Gwinner, R. Klawitter, B. Kootte, A.A. Kwiatkowski, Y. Lan, D. Lascar, E. Leistenschneider, A. Lennarz, S. Paul, R. Steinbrügge, R.I. Thompson, M. Wieser, J. Dilling, High-precision \({Q}_{{\rm ec}}\)-value measurement of the superallowed \({\beta }^{+}\) emitter \(^{22}{{\rm Mg}}\) and an ab initio evaluation of the \(A=22\) isobaric triplet. Phys. Rev. C 96, 052501 (2017). https://doi.org/10.1103/PhysRevC.96.052501

    Article  ADS  Google Scholar 

  64. C. Babcock, R. Klawitter, E. Leistenschneider, D. Lascar, B.R. Barquest, A. Finlay, M. Foster, A.T. Gallant, P. Hunt, B. Kootte, Y. Lan, S.F. Paul, M.L. Phan, M.P. Reiter, B. Schultz, D. Short, C. Andreoiu, M. Brodeur, I. Dillmann, G. Gwinner, A.A. Kwiatkowski, K.G. Leach, J. Dilling, Mass measurements of neutron-rich indium isotopes toward the \(N=82\) shell closure. Phys. Rev. C 97, 024312 (2018). https://doi.org/10.1103/PhysRevC.97.024312

    Article  ADS  Google Scholar 

  65. E.M. Lykiardopoulou, C. Izzo, E. Leistenschneider, A.A. Kwiatkowski, J. Dilling, Towards high precision mass measurements of highly charged ions using the phase-imaging ion-cyclotron-resonance technique at TITAN. Hyperfine Interact. 241(1), 37 (2020). https://doi.org/10.1007/s10751-020-1705-5

    Article  ADS  Google Scholar 

  66. P.G. Hansen, A.S. Jensen, B. Jonson, Nuclear halos. Annu. Rev. Nucl. Part. Sci. 45, 591–634 (1995). https://doi.org/10.1146/annurev.ns.45.120195.003111

    Article  ADS  Google Scholar 

  67. B. Jonson, Light dripline nuclei. Phys. Rep. 389(1), 1–59 (2004). https://doi.org/10.1016/j.physrep.2003.07.004

    Article  ADS  Google Scholar 

  68. K. Riisager, Halos and related structures. Phys. Scr. 2013(T152), 014001 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014001

    Article  Google Scholar 

  69. Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, High precision atomic theory for Li and \({\rm Be }^{+}\): QED shifts and isotope shifts. Phys. Rev. Lett. 100, 243002 (2008). https://doi.org/10.1103/PhysRevLett.100.243002

    Article  ADS  Google Scholar 

  70. V.L. Ryjkov, M. Brodeur, T. Brunner, M. Smith, R. Ringle, A. Lapierre, F. Ames, P. Bricault, M. Dombsky, P. Delheij, D. Lunney, M.R. Pearson, J. Dilling, Direct mass measurement of the four-neutron halo nuclide \(^{8}\rm He \). Phys. Rev. Lett. 101, 012501 (2008). https://doi.org/10.1103/PhysRevLett.101.012501

    Article  ADS  Google Scholar 

  71. M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M.J. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, S. Bacca, P. Delheij, G.W.F. Drake, D. Lunney, A. Schwenk, J. Dilling, First direct mass measurement of the two-neutron halo nucleus \(^{6}{{\rm He}}\) and improved mass for the four-neutron halo \(^{8}{{\rm He}}\). Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504

    Article  ADS  Google Scholar 

  72. R. Ringle, M. Brodeur, T. Brunner, S. Ettenauer, M. Smith, A. Lapierre, V.L. Ryjkov, P. Delheij, G.W.F. Drake, J. Lassen, D. Lunney, J. Dilling, High-precision penning trap mass measurements of 9,10be and the one-neutron halo nuclide 11be. Phys. Lett. B 675(2), 170–174 (2009). https://doi.org/10.1016/j.physletb.2009.04.014

    Article  ADS  Google Scholar 

  73. A.H. Wapstra, G. Audi, C. Thibault, The ame2003 atomic mass evaluation: (i). Evaluation of input data, adjustment procedures. Nucl. Phys. A 729(1), 129–336 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.002. The 2003 NUBASE and Atomic Mass Evaluations

  74. M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, G. Audi, P. Delheij, D. Lunney, J. Dilling, New mass measurement of \(^{6}\rm Li \) and ppb-level systematic studies of the penning trap mass spectrometer titan. Phys. Rev. C 80, 044318 (2009). https://doi.org/10.1103/PhysRevC.80.044318

    Article  ADS  Google Scholar 

  75. P. Mueller, I.A. Sulai, A.C.C. Villari, J.A. Alcántara-Núñez, R. Alves-Condé, K. Bailey, G.W.F. Drake, M. Dubois, C. Eléon, G. Gaubert, R.J. Holt, R.V.F. Janssens, N. Lecesne, Z.-T. Lu, T.P. O’Connor, M.-G. Saint-Laurent, J.-C. Thomas, L.-B. Wang, Nuclear charge radius of \(^{8}\rm He \). Phys. Rev. Lett. 99, 252501 (2007). https://doi.org/10.1103/PhysRevLett.99.252501

    Article  ADS  Google Scholar 

  76. ...R. Sánchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, B.A. Bushaw, A. Dax, J. Dilling, M. Dombsky, G.W.F. Drake, S. Götte, R. Kirchner, H.-J. Kluge, T. Kühl, J. Lassen, C.D.P. Levy, M.R. Pearson, E.J. Prime, V. Ryjkov, A. Wojtaszek, Z.-C. Yan, C. Zimmermann, Nuclear charge radii of \(^{9,11}\rm Li \): the influence of halo neutrons. Phys. Rev. Lett. 96, 033002 (2006). https://doi.org/10.1103/PhysRevLett.96.033002

  77. W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M.L. Bissell, R. Cazan, G.W.F. Drake, C. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D.T. Yordanov, C. Zimmermann, Nuclear charge radii of \(^{7,9,10}{{\rm Be}}\) and the one-neutron halo nucleus \(^{11}{{\rm Be}}\). Phys. Rev. Lett. 102, 062503 (2009). https://doi.org/10.1103/PhysRevLett.102.062503

    Article  ADS  Google Scholar 

  78. S. Bacca, A. Schwenk, G. Hagen, T. Papenbrock, Helium halo nuclei from low-momentum interactions. Eur. Phys. J. A 42(3), 553–558 (2009). https://doi.org/10.1140/epja/i2009-10815-5

    Article  ADS  Google Scholar 

  79. M. Goeppert Mayer, J.H.D. Jensen, Elementary theory of nuclear shell structure. Wiley (1955)

  80. A. Chaudhuri, C. Andreoiu, T. Brunner, U. Chowdhury, S. Ettenauer, A.T. Gallant, G. Gwinner, A.A. Kwiatkowski, A. Lennarz, D. Lunney, T.D. Macdonald, B.E. Schultz, M.C. Simon, V.V. Simon, J. Dilling, Evidence for the extinction of the \(n=20\) neutron-shell closure for \({}^{32}\)mg from direct mass measurements. Phys. Rev. C 88, 054317 (2013). https://doi.org/10.1103/PhysRevC.88.054317

    Article  ADS  Google Scholar 

  81. A.A. Kwiatkowski, C. Andreoiu, J.C. Bale, A. Chaudhuri, U. Chowdhury, S. Malbrunot-Ettenauer, A.T. Gallant, A. Grossheim, G. Gwinner, A. Lennarz, T.D. Macdonald, T.J.M. Rauch, B.E. Schultz, S. Seeraji, M.C. Simon, V.V. Simon, D. Lunney, A. Poves, J. Dilling, Observation of a crossover of \({S}_{2n}\) in the island of inversion from precision mass spectrometry. Phys. Rev. C 92, 061301 (2015). https://doi.org/10.1103/PhysRevC.92.061301

    Article  ADS  Google Scholar 

  82. A.T. Gallant, M. Alanssari, J.C. Bale, C. Andreoiu, B.R. Barquest, U. Chowdhury, J. Even, A. Finlay, D. Frekers, G. Gwinner, R. Klawitter, B. Kootte, A.A. Kwiatkowski, D. Lascar, K.G. Leach, E. Leistenschneider, A. Lennarz, A.J. Mayer, D. Short, R. Thompson, M. Wieser, D. Lunney, J. Dilling, Mass determination near \(N=20\) for Al and Na isotopes. Phys. Rev. C 96, 024325 (2017). https://doi.org/10.1103/PhysRevC.96.024325

    Article  ADS  Google Scholar 

  83. A. Jacobs, C. Andreoiu, J. Bergmann, T. Brunner, T. Dickel, I. Dillmann, E. Dunling, J. Flowerdew, L. Graham, G. Gwinner, Z. Hockenbery, W.J. Huang, B. Kootte, Y. Lan, K.G. Leach, E. Leistenschneider, D. Lunney, E.M. Lykiardopoulou, V. Monier, I. Mukul, S.F. Paul, W.R. Plaß, M.P. Reiter, C. Scheidenberger, R. Thompson, J.L. Tracy, C. Will, M.E. Wieser, J. Dilling, A.A. Kwiatkowski, Improved high-precision mass measurements of mid-shell neon isotopes. Nucl. Phys. A 1033, 122636 (2023). https://doi.org/10.1016/j.nuclphysa.2023.122636

    Article  Google Scholar 

  84. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, H. Sakurai, Y. Shiga, P.-A. Söderström, T. Sumikama, H. Suzuki, R. Taniuchi, Y. Utsuno, J.J. Valiente-Dobón, K. Yoneda, Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca. Nature 502(7470), 207–210 (2013). https://doi.org/10.1038/nature12522

    Article  ADS  Google Scholar 

  85. F. Tondeur, Self-consistent study of nuclei far from stability with the energy density methods, in 4th Int. Conf. Nucl. Far from Stability, Helsingør, Denmark, pp. 81–89 (1981). https://doi.org/10.5170/CERN-1981-009.81

  86. A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves, H.L. Ravn, G. Marguier, Beta decay of the new isotopes \(^{52}{{\rm K}}\), \(^{52}{{\rm Ca}}\), and \(^{52}{{\rm Sc}} \); a test of the shell model far from stability. Phys. Rev. C 31, 2226–2237 (1985). https://doi.org/10.1103/PhysRevC.31.2226

    Article  ADS  Google Scholar 

  87. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005). https://doi.org/10.1103/PhysRevLett.95.232502

    Article  ADS  Google Scholar 

  88. S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021). https://doi.org/10.1103/PhysRevLett.126.022501

    Article  ADS  Google Scholar 

  89. A.T. Gallant, J.C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, A. Lennarz, D. Robertson, V.V. Simon, A. Chaudhuri, J.D. Holt, A.A. Kwiatkowski, E. Mané, J. Menéndez, B.E. Schultz, M.C. Simon, C. Andreoiu, P. Delheij, M.R. Pearson, H. Savajols, A. Schwenk, J. Dilling, New precision mass measurements of neutron-rich calcium and potassium isotopes and three-nucleon forces. Phys. Rev. Lett. 109, 032506 (2012). https://doi.org/10.1103/PhysRevLett.109.032506

    Article  ADS  Google Scholar 

  90. M.P. Reiter, S. Ayet San Andrés, E. Dunling, B. Kootte, E. Leistenschneider, C. Andreoiu, C. Babcock, B.R. Barquest, J. Bollig, T. Brunner, I. Dillmann, A. Finlay, G. Gwinner, L. Graham, J.D. Holt, C. Hornung, C. Jesch, R. Klawitter, Y. Lan, D. Lascar, J.E. McKay, S.F. Paul, R. Steinbrügge, R. Thompson, J.L. Tracy, M.E. Wieser, C. Will, T. Dickel, W.R. Plaß, C. Scheidenberger, A.A. Kwiatkowski, J. Dilling, Quenching of the \(N=32\) neutron shell closure studied via precision mass measurements of neutron-rich vanadium isotopes. Phys. Rev. C 98, 024310 (2018). https://doi.org/10.1103/PhysRevC.98.024310

  91. ...W.S. Porter, E. Dunling, E. Leistenschneider, J. Bergmann, G. Bollen, T. Dickel, K.A. Dietrich, A. Hamaker, Z. Hockenbery, C. Izzo, A. Jacobs, A. Javaji, B. Kootte, Y. Lan, I. Miskun, I. Mukul, T. Murböck, S.F. Paul, W.R. Plaß, D. Puentes, M. Redshaw, M.P. Reiter, R. Ringle, J. Ringuette, R. Sandler, C. Scheidenberger, R. Silwal, R. Simpson, C.S. Sumithrarachchi, A. Teigelhöfer, A.A. Valverde, R. Weil, I.T. Yandow, J. Dilling, A.A. Kwiatkowski, Investigating nuclear structure near \(N=32\) and \(N=34:\) precision mass measurements of neutron-rich Ca, Ti, and V isotopes. Phys. Rev. C 106, 024312 (2022). https://doi.org/10.1103/PhysRevC.106.024312

  92. E. Leistenschneider, E. Dunling, G. Bollen, B.A. Brown, J. Dilling, A. Hamaker, J.D. Holt, A. Jacobs, A.A. Kwiatkowski, T. Miyagi, W.S. Porter, D. Puentes, M. Redshaw, M.P. Reiter, R. Ringle, R. Sandler, C.S. Sumithrarachchi, A.A. Valverde, I.T. Yandow, Precision mass measurements of neutron-rich scandium isotopes refine the evolution of \(n=32\) and \(n=34\) shell closures. Phys. Rev. Lett. 126, 042501 (2021). https://doi.org/10.1103/PhysRevLett.126.042501

    Article  ADS  Google Scholar 

  93. ...R. Silwal, C. Andreoiu, B. Ashrafkhani, J. Bergmann, T. Brunner, J. Cardona, K. Dietrich, E. Dunling, G. Gwinner, Z. Hockenbery, J.D. Holt, C. Izzo, A. Jacobs, A. Javaji, B. Kootte, Y. Lan, D. Lunney, E.M. Lykiardopoulou, T. Miyagi, M. Mougeot, I. Mukul, T. Murböck, W.S. Porter, M. Reiter, J. Ringuette, J. Dilling, A.A. Kwiatkowski, Summit of the n=40 island of inversion: precision mass measurements and ab initio calculations of neutron-rich chromium isotopes. Phys. Lett. B 833, 137288 (2022). https://doi.org/10.1016/j.physletb.2022.137288

  94. D. Lascar, R. Klawitter, C. Babcock, E. Leistenschneider, S.R. Stroberg, B.R. Barquest, A. Finlay, M. Foster, A.T. Gallant, P. Hunt, J. Kelly, B. Kootte, Y. Lan, S.F. Paul, M.L. Phan, M.P. Reiter, B. Schultz, D. Short, J. Simonis, C. Andreoiu, M. Brodeur, I. Dillmann, G. Gwinner, J.D. Holt, A.A. Kwiatkowski, K.G. Leach, J. Dilling, Precision mass measurements of \(^{125-127}\rm Cd \) isotopes and isomers approaching the \(N=82\) closed shell. Phys. Rev. C 96, 044323 (2017). https://doi.org/10.1103/PhysRevC.96.044323

    Article  ADS  Google Scholar 

  95. C. Izzo, J. Bergmann, K.A. Dietrich, E. Dunling, D. Fusco, A. Jacobs, B. Kootte, G. Kripkó-Koncz, Y. Lan, E. Leistenschneider, E.M. Lykiardopoulou, I. Mukul, S.F. Paul, M.P. Reiter, J.L. Tracy, C. Andreoiu, T. Brunner, T. Dickel, J. Dilling, I. Dillmann, G. Gwinner, D. Lascar, K.G. Leach, W.R. Plaß, C. Scheidenberger, M.E. Wieser, A.A. Kwiatkowski, Mass measurements of neutron-rich indium isotopes for \(r\)-process studies. Phys. Rev. C 103, 025811 (2021). https://doi.org/10.1103/PhysRevC.103.025811

    Article  ADS  Google Scholar 

  96. ...S. Beck, B. Kootte, I. Dedes, T. Dickel, A.A. Kwiatkowski, E.M. Lykiardopoulou, W.R. Plaß, M.P. Reiter, C. Andreoiu, J. Bergmann, T. Brunner, D. Curien, J. Dilling, J. Dudek, E. Dunling, J. Flowerdew, A. Gaamouci, L. Graham, G. Gwinner, A. Jacobs, R. Klawitter, Y. Lan, E. Leistenschneider, N. Minkov, V. Monier, I. Mukul, S.F. Paul, C. Scheidenberger, R.I. Thompson, J.L. Tracy, M. Vansteenkiste, H.-L. Wang, M.E. Wieser, C. Will, J. Yang, Mass measurements of neutron-deficient Yb isotopes and nuclear structure at the extreme proton-rich side of the \(N=82\) shell. Phys. Rev. Lett. 127, 112501 (2021). https://doi.org/10.1103/PhysRevLett.127.112501

  97. H. Schatz, A.D.B. Reyes,A. Best, E.F. Brown, K. Chatziioannou, K.A. Chipps, C.M. Deibel, R. Ezzeddine, D.K. Galloway, C.J. Hansen, F. Herwig, A.P. Ji, M. Lugaro, Z. Meisel, D. Norman, J.S. Read, L.F. Roberts, A. Spyrou, I. Tews, F.X. Timmes, C. Travaglio, N. Vassh, C. Abia, P. Adsley, S. Agarwal, M. Aliotta, W. Aoki, A. Arcones, A. Aryan, A. Bandyopadhyay, A. Banu, D.W. Bardayan, J. Barnes, A. Bauswein, T.C. Beers, J. Bishop, T. Boztepe, B. Côté, M.E. Caplan, A. E. Champagne, J.A. Clark, M. Couder, A. Couture, S.E. de Mink, S. Debnath, R.J. deBoer, J. den Hartogh, P. Denissenkov, V. Dexheimer, I. Dillmann, J.E. Escher, M.A. Famiano, R. Farmer, R. Fisher, C. Fröhlich, A. Frebel, C. Fryer, G. Fuller, A.K. Ganguly, S. Ghosh, B.K. Gibson, T. Gorda, K.N. Gourgouliatos, V. Graber, M. Gupta, W.C. Haxton, A. Heger, W.R. Hix, W.C.G. Ho, E.M. Holmbeck, A.A. Hood, S. Huth, G. Imbriani, R.G. Izzard, R. Jain, H. Jayatissa, Z. Johnston, T. Kajino, A. Kankainen, G.G. Kiss, A. Kwiatkowski, M.L. Cognata, A.M. Laird, L. Lamia, P. Landry, E. Laplace, K.D. Launey, D. Leahy, G. Leckenby, A. Lennarz, B. Longfellow, A.E. Lovell, W.G. Lynch, S.M. Lyons, K. Maeda, E. Masha, C. Matei, J. Merc, B. Messer, F. Montes, A. Mukherjee, M.R. Mumpower, D. Neto, B. Nevins, W.G. Newton, L.Q. Nguyen, K. Nishikawa, N. Nishimura, F.M. Nunes, E. O’Connor, B.W. O’Shea, W.-J. Ong, S.D. Pain, M.A. Pajkos, M. Pignatari, R.G. Pizzone, V.M. Placco, T. Plewa, B. Pritychenko, A. Psaltis, D. Puentes, Y.-Z. Qian, D. Radice, D. Rapagnani, B.M. Rebeiro, R. Reifarth, A.L. Richard, N. Rijal, I.U. Roederer, J.S. Rojo, J.S. K, Y. Saito, A. Schwenk, M.L. Sergi, R.S. Sidhu, A. Simon, T. Sivarani, Skúladóttir, M.S. Smith, A. Spiridon, T.M. Sprouse, S. Starrfield, A.W. Steiner, F. Strieder, I. Sultana, R. Surman, T. Szücs, A. Tawfik, F. Thielemann, L. Trache, R. Trappitsch, M.B. Tsang, A. Tumino, S. Upadhyayula, J.O.V. Martínez, M.V. der Swaelmen, C.V. Vázquez, A. Watts, B. Wehmeyer, M. Wiescher, C. Wrede, J. Yoon, R.G.T. Zegers, M.A. Zermane, M. Zingale, Horizons: nuclear astrophysics in the 2020s and beyond. J. Phys. G Nucl. Part. Phys. 49(11), 110502 (2022). https://doi.org/10.1088/1361-6471/ac8890

  98. V.V. Simon, T. Brunner, U. Chowdhury, B. Eberhardt, S. Ettenauer, A.T. Gallant, E. Mané, M.C. Simon, P. Delheij, M.R. Pearson, G. Audi, G. Gwinner, D. Lunney, H. Schatz, J. Dilling, Penning-trap mass spectrometry of highly charged, neutron-rich rb and sr isotopes in the vicinity of \(\textbf{A} \approx \textbf{100} \). Phys. Rev. C 85, 064308 (2012). https://doi.org/10.1103/PhysRevC.85.064308

    Article  ADS  Google Scholar 

  99. R. Klawitter, A. Bader, M. Brodeur, U. Chowdhury, A. Chaudhuri, J. Fallis, A.T. Gallant, A. Grossheim, A.A. Kwiatkowski, D. Lascar, K.G. Leach, A. Lennarz, T.D. Macdonald, J. Pearkes, S. Seeraji, M.C. Simon, V.V. Simon, B.E. Schultz, J. Dilling, Mass measurements of neutron-rich rb and sr isotopes. Phys. Rev. C 93, 045807 (2016). https://doi.org/10.1103/PhysRevC.93.045807

    Article  ADS  Google Scholar 

  100. I. Mukul, C. Andreoiu, J. Bergmann, M. Brodeur, T. Brunner, K.A. Dietrich, T. Dickel, I. Dillmann, E. Dunling, D. Fusco, G. Gwinner, C. Izzo, A. Jacobs, B. Kootte, Y. Lan, E. Leistenschneider, E.M. Lykiardopoulou, S.F. Paul, M.P. Reiter, J.L. Tracy, J. Dilling, A.A. Kwiatkowski, Examining the nuclear mass surface of rb and sr isotopes in the \(a\approx 104\) region via precision mass measurements. Phys. Rev. C 103, 044320 (2021). https://doi.org/10.1103/PhysRevC.103.044320

    Article  ADS  Google Scholar 

  101. M.P. Reiter, S. Ayet San Andrés, S. Nikas, J. Lippuner, C. Andreoiu, C. Babcock, B.R. Barquest, J. Bollig, T. Brunner, T. Dickel, J. Dilling, I. Dillmann, E. Dunling, G. Gwinner, L. Graham, C. Hornung, R. Klawitter, B. Kootte, A.A. Kwiatkowski, Y. Lan, D. Lascar, K.G. Leach, E. Leistenschneider, G. Martínez-Pinedo, J.E. McKay, S.F. Paul, W.R. Plaß, L. Roberts, H. Schatz, C. Scheidenberger, A. Sieverding, R. Steinbrügge, R. Thompson, M.E. Wieser, C. Will, D. Welch, Mass measurements of neutron-rich gallium isotopes refine production of nuclei of the first \(r\)-process abundance peak in neutron-star merger calculations. Phys. Rev. C 101, 025803 (2020). https://doi.org/10.1103/PhysRevC.101.025803

  102. J.C. Hardy, I.S. Towner, Superallowed \({0}^{+}\rightarrow {0}^{+}\) nuclear \(\beta \) decays: 2020 critical survey, with implications for \({V}_{\mathit{ud}}\) and ckm unitarity. Phys. Rev. C 102, 045501 (2020). https://doi.org/10.1103/PhysRevC.102.045501

    Article  ADS  Google Scholar 

  103. J.C. Hardy, I.S. Towner, Superallowed \({0}^{+}\rightarrow {0}^{+}\) nuclear \(\beta \) decays: 2014 critical survey, with precise results for \({V}_{ud}\) and ckm unitarity. Phys. Rev. C 91, 025501 (2015). https://doi.org/10.1103/PhysRevC.91.025501

    Article  ADS  Google Scholar 

  104. Particle Data Group, R.L. Workman, et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022(8) (2022)

  105. L. Xayavong, N.A. Smirnova, Radial overlap correction to superallowed \({0}^{+}\rightarrow {0}^{+}\)\(\beta \) decay reexamined. Phys. Rev. C 97, 024324 (2018). https://doi.org/10.1103/PhysRevC.97.024324

    Article  ADS  Google Scholar 

  106. M.S. Martin, S.R. Stroberg, J.D. Holt, K.G. Leach, Testing isospin symmetry breaking in ab initio nuclear theory. Phys. Rev. C 104, 014324 (2021). https://doi.org/10.1103/PhysRevC.104.014324

    Article  ADS  Google Scholar 

  107. M. Gorchtein, \(\gamma w\) box inside out: nuclear polarizabilities distort the beta decay spectrum. Phys. Rev. Lett. 123, 042503 (2019). https://doi.org/10.1103/PhysRevLett.123.042503

    Article  ADS  Google Scholar 

  108. S. Ettenauer, M. Brodeur, T. Brunner, A.T. Gallant, A. Lapierre, R. Ringle, M.R. Pearson, P. Delheij, J. Lassen, D. Lunney, J. Dilling, Precision ground state mass of \(^{12}\rm Be \) and an isobaric multiplet mass equation (imme) extrapolation for \({2}^{+}\) and \({0}_{2}^{+}\) states in the \(t=2\), \(a=12\) multiplet. Phys. Rev. C 81, 024314 (2010). https://doi.org/10.1103/PhysRevC.81.024314

    Article  ADS  Google Scholar 

  109. A.T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A. Grossheim, R. Klawitter, A.A. Kwiatkowski, K.G. Leach, A. Lennarz, T.D. Macdonald, B.E. Schultz, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, B.A. Brown, A. Magilligan, J.D. Holt, J. Menéndez, J. Simonis, A. Schwenk, J. Dilling, Breakdown of the isobaric multiplet mass equation for the \(a=20\) and 21 multiplets. Phys. Rev. Lett. 113, 082501 (2014). https://doi.org/10.1103/PhysRevLett.113.082501

    Article  ADS  Google Scholar 

  110. M. Brodeur, A.A. Kwiatkowski, O.M. Drozdowski, C. Andreoiu, D. Burdette, A. Chaudhuri, U. Chowdhury, A.T. Gallant, A. Grossheim, G. Gwinner, H. Heggen, J.D. Holt, R. Klawitter, J. Lassen, K.G. Leach, A. Lennarz, C. Nicoloff, S. Raeder, B.E. Schultz, S.R. Stroberg, A. Teigelhöfer, R. Thompson, M. Wieser, J. Dilling, Precision mass measurements of magnesium isotopes and implications for the validity of the isobaric mass multiplet equation. Phys. Rev. C 96, 034316 (2017). https://doi.org/10.1103/PhysRevC.96.034316

  111. B.E. Schultz, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A.T. Gallant, A. Grossheim, R. Klawitter, A.A. Kwiatkowski, K.G. Leach, A. Lennarz, T.D. Macdonald, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, J. Dilling, Precision \({Q}_{{\rm ec}}\text{-value}\) measurement of \(^{23}{{\rm Mg}}\) for testing the Cabibbo-Kobayashi-Maskawa matrix unitarity. Phys. Rev. C 90, 012501 (2014). https://doi.org/10.1103/PhysRevC.90.012501

  112. S. Malbrunot-Ettenauer, T. Brunner, U. Chowdhury, A.T. Gallant, V.V. Simon, M. Brodeur, A. Chaudhuri, E. Mané, M.C. Simon, C. Andreoiu, G. Audi, J.R. Crespo López-Urrutia, P. Delheij, G. Gwinner, A. Lapierre, D. Lunney, M.R. Pearson, R. Ringle, J. Ullrich, J. Dilling, Penning trap mass measurements utilizing highly charged ions as a path to benchmark isospin-symmetry breaking corrections in \(^{74}\rm Rb \). Phys. Rev. C 91, 045504 (2015). https://doi.org/10.1103/PhysRevC.91.045504

  113. E. Leistenschneider, Dawning of nuclear magicity in n = 32 seen through precision mass spectrometry. PhD thesis, University of British Columbia (2019). https://doi.org/10.14288/1.0383355

  114. M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, G. Audi, P. Delheij, D. Lunney, J. Dilling, New mass measurement of Li6 and ppb-level systematic studies of the Penning trap mass spectrometer TITAN. Phys. Rev. C Nucl. Phys. 80(4), 44318 (2009). https://doi.org/10.1103/PhysRevC.80.044318

    Article  ADS  Google Scholar 

  115. M. Mukherjee, D. Beck, K. Blaum, G. Bollen, J. Dilling, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, S. Schwarz, L. Schweikhard, C. Yazidjian, Isoltrap: an on-line penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A 35(1), 1–29 (2008). https://doi.org/10.1140/epja/i2007-10528-9

    Article  ADS  Google Scholar 

  116. W. Quint, J. Dilling, S. Djekic, H. Haffner, N. Hermanspahn, H.-J. Kluge, G. Marx, R. Moore, D. Rodriguez, J. Schonfelder, G. Sikler, T. Valenzueka, J. Verdu, C. Weber, G. Werth, Hitrap: a facility for experiments with trapped highly charged ions. Hyperfine Interact. 132(1), 453–457 (2001). https://doi.org/10.1023/A:1011908332584

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the TITAN collaboration for their hard work, dedication, and collegiality over many years. The many undergraduate students from around the world who contributed, the graduate students from the TITAN partner institutions, and the over 30 post-doctoral fellows who carried a major part of the success at TITAN. Since TITAN is a highly technical system, operating at the edge of technology, it is only possible with dedicated experts, many at TRIUMF and the partner institutions. In particular, we want to highlight Mr. M. Good, for almost 20 years of technical support of the highest level. Moreover, the success of TITAN is based on many people contributing including those who help on the user facility side of TRIUMF, and as such we thank the ISAC team, including the beam development and beam delivery groups to support and enable our collaborations to explore new target designs and new beams to ISAC as well as for scientific opportunities and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Dilling.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiatkowski, A.A., Dilling, J., Malbrunot-Ettenauer, S. et al. 15 years of precision mass measurements at TITAN. Eur. Phys. J. A 60, 87 (2024). https://doi.org/10.1140/epja/s10050-024-01241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01241-6

Navigation