Skip to main content
Log in

Studying the impact of virtuality-dependent nucleon structure modification on spectator-tagged deep inelastic scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Measurements of deep inelastic scattering from nuclei have revealed that the partonic structure of bound nucleons differs from that of free nucleons. One hypothesis is that this structure modification primarily occurs in highly virtual nucleons participating in short-range correlations, although distinguishing this from other hypotheses is difficult with inclusive measurements alone. Spectator-tagged deep inelastic scattering, on the other hand, may offer a way to specifically probe the partonic structure of highly-virtual nucleons by detecting the correlated emission of a spectator nucleon. Here, we present a method for calculating a “spectator-tagged” structure function for a nucleus by combining Generalized Contact Formalism’s description of short-range correlations with light-cone convolution formalism to determine the impact of nucleon motion on the structure function. We apply this method to calculate predictions for helium-4, and find that differences in the virtuality-dependence of nucleon structure modification can lead to large measurable changes in the tagged structure function. The recent CLAS12 Short-Range Correlations Experiment, which collected electron scattering data on helium-4 and other nuclear targets, may be able to constrain this virtuality-dependence and help test whether correlations are the origin of the modification of bound nucleon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper presents a calculation method, and has no associated data.]

References

  1. J.J. Aubert et al., The ratio of the nucleon structure functions \(F2_n\) for iron and deuterium. Phys. Lett. B 123, 275–278 (1983). https://doi.org/10.1016/0370-2693(83)90437-9

    Article  ADS  Google Scholar 

  2. R.G. Arnold et al., Measurements of the a-Dependence of Deep Inelastic electron Scattering from Nuclei. Phys. Rev. Lett. 52, 727 (1984). https://doi.org/10.1103/PhysRevLett.52.727

    Article  ADS  CAS  Google Scholar 

  3. A.C. Benvenuti et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets. Phys. Lett. B 189, 483–487 (1987). https://doi.org/10.1016/0370-2693(87)90664-2

    Article  ADS  Google Scholar 

  4. J. Gomez et al., Measurement of the A-dependence of deep inelastic electron scattering. Phys. Rev. D 49, 4348–4372 (1994). https://doi.org/10.1103/PhysRevD.49.4348

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. J. Seely et al., New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202–301 (2009). https://doi.org/10.1103/PhysRevLett.103.202301. arXiv:0904.4448 [nucl-ex]

  6. S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136. arXiv:1405.1270 [nucl-ex]

  7. O. Hen, G.A. Miller, E. Piasetzky, L.B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002. arXiv:1611.09748 [nucl-ex]

  8. E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Evidence for the strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006). https://doi.org/10.1103/PhysRevLett.97.162504. arXiv:nucl-th/0604012

  9. N. Fomin et al., New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett. 108, 092502 (2012). https://doi.org/10.1103/PhysRevLett.108.092502. arXiv:1107.3583 [nucl-ex]

  10. S. Terashima et al., Dominance of tensor correlations in high-momentum nucleon pairs studied by (p,pd) reaction. Phys. Rev. Lett. 121(24), 242501 (2018). https://doi.org/10.1103/PhysRevLett.121.242501. arXiv:1811.02118 [nucl-ex]

  11. L.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsian, Evidence for short range correlations from high Q**2 (e, e-prime) reactions. Phys. Rev. C 48, 2451–2461 (1993). https://doi.org/10.1103/PhysRevC.48.2451

    Article  ADS  CAS  Google Scholar 

  12. C. Ciofi degli Atti, S. Simula, Realistic model of the nucleon spectral function in few and many nucleon systems. Phys. Rev. C 53, 1689 (1996). https://doi.org/10.1103/PhysRevC.53.1689. arXiv:nucl-th/9507024

  13. J. Arrington, N. Fomin, A. Schmidt, Progress in understanding short-range structure in nuclei: an experimental perspective. Ann. Rev. Nucl. Part. Sci. 72(1), 307–337 (2022). https://doi.org/10.1146/annurev-nucl-102020-022253. arXiv:2203.02608 [nucl-ex]

    Article  ADS  CAS  Google Scholar 

  14. L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Short range correlations and the EMC effect. Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301. arXiv:1009.5666 [hep-ph]

  15. O. Hen, E. Piasetzky, L.B. Weinstein, New data strengthen the connection between Short Range Correlations and the EMC effect. Phys. Rev. C 85, 047301 (2012). https://doi.org/10.1103/PhysRevC.85.047301. arXiv:1202.3452 [nucl-ex]

  16. J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, A detailed study of the nuclear dependence of the EMC effect and short-range correlations. Phys. Rev. C 86, 065204 (2012). https://doi.org/10.1103/PhysRevC.86.065204. arXiv:1206.6343 [nucl-ex]

  17. J.W. Chen, W. Detmold, J.E. Lynn, A. Schwenk, Short Range Correlations and the EMC effect in effective field theory. Phys. Rev. Lett. 119(26), 262502 (2017). https://doi.org/10.1103/PhysRevLett.119.262502. arXiv:1607.03065 [hep-ph]

  18. B. Schmookler et al., Modified structure of protons and neutrons in correlated pairs. Nature 566(7744), 354–358 (2019). https://doi.org/10.1038/s41586-019-0925-9. arXiv:2004.12065 [nucl-ex]

    Article  Google Scholar 

  19. E.P. Segarra, A. Schmidt, T. Kutz, D.W. Higinbotham, E. Piasetzky, M. Strikman, L.B. Weinstein, O. Hen, Neutron valence structure from nuclear deep inelastic scattering. Phys. Rev. Lett. 124(9), 092002 (2020). https://doi.org/10.1103/PhysRevLett.124.092002. arXiv:1908.02223 [nucl-th]

  20. D. Abrams et al., Measurement of the nucleon \(F^n_2/F^p_2\) structure function ratio by the Jefferson lab MARATHON Tritium/Helium-3 deep inelastic scattering experiment. Phys. Rev. Lett. 128(13), 132003 (2022). https://doi.org/10.1103/PhysRevLett.128.132003. arXiv:2104.05850 [hep-ex]

  21. R.P. Bickerstaff, M.C. Birse, G.A. Miller, Disentangling explanations of deep inelastic lepton nucleus scattering by lepton pair production. Phys. Rev. Lett. 53, 2532–2535 (1984). https://doi.org/10.1103/PhysRevLett.53.2532

    Article  ADS  CAS  Google Scholar 

  22. C. Ciofi degli Atti, S. Simula, Nucleon-nucleon correlations and six quark cluster effects in semiinclusive deep inelastic lepton scattering off few nucleon systems. Few Body Syst. 18, 55–71 (1995). https://doi.org/10.1007/s006010050004. arXiv:nucl-th/9409017

  23. J.R. West, S.J. Brodsky, G.F. de Teramond, A.S. Goldhaber, I. Schmidt, QCD hidden-color hexadiquark in the core of nuclei. Nucl. Phys. A 1007, 122134 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122134. arXiv:2004.14659 [hep-ph]

  24. J.R. West, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A 1029, 122563 (2023). https://doi.org/10.1016/j.nuclphysa.2022.122563. arXiv:2009.06968 [hep-ph]

  25. C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, On the dependence of the wave function of a bound nucleon on its momentum and the EMC effect. Phys. Rev. C 76, 055206 (2007). https://doi.org/10.1103/PhysRevC.76.055206. arXiv:0706.2937 [nucl-th]

  26. J. Arrington, N. Fomin, Searching for flavor dependence in nuclear quark behavior. Phys. Rev. Lett. 123(4), 042501 (2019). https://doi.org/10.1103/PhysRevLett.123.042501. arXiv:1903.12535 [nucl-ex]

  27. R. Cruz-Torres, D. Lonardoni, R. Weiss, N. Barnea, D.W. Higinbotham, E. Piasetzky, A. Schmidt, L.B. Weinstein, R.B. Wiringa, O. Hen, Many-body factorization and position–momentum equivalence of nuclear short-range correlations. Nat. Phys. 17(3), 306–310 (2021). https://doi.org/10.1038/s41567-020-01053-7. arXiv:1907.03658 [nucl-th]

  28. M.W. Paris, V.R. Pandharipande, Quantum Monte Carlo calculations of six quark states. Phys. Rev. C 62, 015201 (2000). https://doi.org/10.1103/PhysRevC.62.015201. arXiv:nucl-th/0002041

  29. X.G. Wang, A.W. Thomas, W. Melnitchouk, Do short-range correlations cause the nuclear EMC effect in the deuteron? Phys. Rev. Lett. 125, 262,002 (2020). https://doi.org/10.1103/PhysRevLett.125.262002. arXiv:2004.03789 [hep-ph]

  30. J. Arrington et al., Measurement of the EMC effect in light and heavy nuclei. Phys. Rev. C 104(6), 065203 (2021). https://doi.org/10.1103/PhysRevC.104.065203. arXiv:2110.08399 [nucl-ex]

  31. A.V. Klimenko et al., Electron scattering from high-momentum neutrons in deuterium. Phys. Rev. C 73, 035212 (2006). https://doi.org/10.1103/PhysRevC.73.035212. arXiv:nucl-ex/0510032

  32. N. Baillie et al., Measurement of the neutron F2 structure function via spectator tagging with CLAS. Phys. Rev. Lett. 108, 142001 (2012). https://doi.org/10.1103/PhysRevLett.108.142001. [Erratum: Phys.Rev.Lett. 108, 199902 (2012)]. arXiv:1110.2770 [nucl-ex]

  33. S. Tkachenko et al., Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic \(^2\)H(e, e’p)X scattering with CLAS. Phys. Rev. C 89, 045206 (2014). https://doi.org/10.1103/PhysRevC.89.045206. [Addendum: Phys.Rev.C 90, 059901 (2014)]. arXiv:1402.2477 [nucl-ex]

  34. O. Hen, and others. The BAND experiment: In Medium Proton Structure Functions, SRC, and the EMC effect. Jefferson Lab Experiment E12-11-003A

  35. O. Hen, and others. The LAD experiment. In Medium Nucleon Structure Functions, SRC, and the EMC effect. Jefferson Lab Experiment E12-11-107

  36. E.P. Segarra et al., The CLAS12 Backward Angle Neutron Detector (BAND). Nucl. Instrum. Meth. A 978, 164356 (2020). https://doi.org/10.1016/j.nima.2020.164356. arXiv:2004.10339 [physics.ins-det]

  37. V.D. Burkert et al., The CLAS12 spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419

  38. O. Hen et al. Exclusive Studies of Short Range Correlations in Nuclei using CLAS12. Jefferson Lab Experiment E12-17-006A

  39. E.P. Segarra, J.R. Pybus, F. Hauenstein, D.W. Higinbotham, G.A. Miller, E. Piasetzky, A. Schmidt, M. Strikman, L.B. Weinstein, O. Hen, Short-range correlations and the nuclear EMC effect in deuterium and helium-3. Phys. Rev. Res. 3(2), 023240 (2021). https://doi.org/10.1103/PhysRevResearch.3.023240. arXiv:2006.10249 [hep-ph]

  40. J.R. Pybus, I. Korover, R. Weiss, A. Schmidt, N. Barnea, D.W. Higinbotham, E. Piasetzky, M. Strikman, L.B. Weinstein, O. Hen, Generalized contact formalism analysis of the 4He(e,e’pN) reaction. Phys. Lett. B 805, 135429 (2020). https://doi.org/10.1016/j.physletb.2020.135429. arXiv:2003.02318 [nucl-th]

  41. C. Colle, W. Cosyn, J. Ryckebusch, M. Vanhalst, Factorization of exclusive electron-induced two-nucleon knockout. Phys. Rev. C 89(2), 024603 (2014). https://doi.org/10.1103/PhysRevC.89.024603. arXiv:1311.1980 [nucl-th]

  42. I. Korover et al., Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the \(^4\)He\((e,e^{\prime }pN)\) Triple-Coincidence Reaction. Phys. Rev. Lett. 113(2), 022501 (2014). https://doi.org/10.1103/PhysRevLett.113.022501. arXiv:1401.6138 [nucl-ex]

  43. E.O. Cohen et al., Center of mass motion of short-range correlated nucleon Pairs studied via the \(A(e,e^{\prime }pp)\) reaction. Phys. Rev. Lett. 121(9), 092501 (2018). https://doi.org/10.1103/PhysRevLett.121.092501. arXiv:1805.01981 [nucl-ex]

  44. A. Airapetian et al., Inclusive measurements of inelastic electron and positron scattering from unpolarized hydrogen and deuterium targets. JHEP 05, 126 (2011). https://doi.org/10.1007/JHEP05(2011)126. arXiv:1103.5704 [hep-ex]

    Article  ADS  CAS  Google Scholar 

  45. H. Abramowicz, E.M. Levin, A. Levy, U. Maor, A parametrization of sigma-T (gamma* p) above the resonance region Q**2 \({>}\)= 0. Phys. Lett. B 269, 465–476 (1991). https://doi.org/10.1016/0370-2693(91)90202-2

    Article  ADS  CAS  Google Scholar 

  46. H. Abramowicz, A. Levy, The ALLM parameterization of sigma(tot)(gamma* p): an update (1997). arXiv:hep-ph/9712415

  47. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016

  48. R. Weiss, I. Korover, E. Piasetzky, O. Hen, N. Barnea, Energy and momentum dependence of nuclear short-range correlations—Spectral function, exclusive scattering experiments and the contact formalism. Phys. Lett. B 791, 242–248 (2019). https://doi.org/10.1016/j.physletb.2019.02.019. arXiv:1806.10217 [nucl-th]

  49. A. Schmidt et al., Probing the core of the strong nuclear interaction. Nature 578(7796), 540–544 (2020). https://doi.org/10.1038/s41586-020-2021-6. arXiv:2004.11221 [nucl-ex]

    Article  ADS  CAS  PubMed  Google Scholar 

  50. I. Korover et al., 12C(e,e’pN) measurements of short range correlations in the tensor-to-scalar interaction transition region. Phys. Lett. B 820, 136523 (2021). https://doi.org/10.1016/j.physletb.2021.136523. arXiv:2004.07304 [nucl-ex]

  51. S.A. Kulagin, R. Petti, Global study of nuclear structure functions. Nucl. Phys. A 765, 126–187 (2006). https://doi.org/10.1016/j.nuclphysa.2005.10.011. arXiv:hep-ph/0412425

    Article  ADS  CAS  Google Scholar 

  52. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-\(x\) parton distributions from new weak boson production and deep-inelastic scattering data. Phys. Rev. D 93(11), 114017 (2016). https://doi.org/10.1103/PhysRevD.93.114017. arXiv:1602.03154 [hep-ph]

  53. M. Strikman, C. Weiss, Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x. Phys. Rev. C 97(3), 035209 (2018). https://doi.org/10.1103/PhysRevC.97.035209. arXiv:1706.02244 [hep-ph]

  54. O. Benhar, V.R. Pandharipande, I. Sick, Nuclear binding and deep inelastic scattering. Phys. Lett. B 410, 79–85 (1997). https://doi.org/10.1016/S0370-2693(97)00943-X

    Article  ADS  CAS  Google Scholar 

  55. O. Benhar, V.R. Pandharipande, I. Sick, Many body theory interpretation of deep inelastic scattering. Phys. Lett. B 489, 131–136 (2000). https://doi.org/10.1016/S0370-2693(00)00909-6. arXiv:nucl-th/0005059

  56. W. Cosyn, M. Sargsian, Nuclear final-state interactions in deep inelastic scattering off the lightest nuclei. Int. J. Mod. Phys. E 26(09), 1730004 (2017). https://doi.org/10.1142/S0218301317300041. arXiv:1704.06117 [nucl-th]

Download references

Acknowledgements

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583. The authors are also grateful to J. R. Pybus, and T. Kutz for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schmidt.

Additional information

Communicated by Patrizia Rossi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratliff, S., Schmidt, A. Studying the impact of virtuality-dependent nucleon structure modification on spectator-tagged deep inelastic scattering. Eur. Phys. J. A 60, 5 (2024). https://doi.org/10.1140/epja/s10050-023-01226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01226-x

Navigation