Skip to main content
Log in

Polarization effects on the rotational gyromagnetic ratio and magnetic dipole moments of 175,177,177mYb

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The measured ground- and isomeric-state magnetic moments of 175,177Yb have been theoretically investigated for the first time using the method based on the Quasiparticle Phonon Nuclear Model (QPNM). In this method, spin-polarization is produced through interaction between the magnetic dipole (M1) excitations of the core and the odd particle. It provides a quenched spin gyromagnetic factor whose magnitude depends on the density of 1+ levels in the core. gR factors, one of the essential inputs of the magnetic moment calculations, have been computed with a newly developed approach. The predictions of theory for the magnetic moments are in excellent agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: Data generated during this study are contained in the published article.]

References

  1. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Google Scholar 

  2. A. Bohr, B. Mottelson, Nuclear Structure, vol. 2 (W.A. Benjamin, Inc., New York, 1975)

    Google Scholar 

  3. B. Castel, I. Towner, Modern Theories of Nuclear Moments (Oxford Science Publications, Oxford, 1990)

    Google Scholar 

  4. R. Neugart, G. Neyens, Nuclear Moments: Lecture Notes in Physics, vol. 700 (Springer, Berlin, 2006)

    Google Scholar 

  5. T. Schmidt, Z. Phys. A 106(5–6), 358–361 (1937)

    Google Scholar 

  6. R.J. Blin-Stoyle, M.A. Perks, Proc. Phys. Soc. A 67(10), 885–894 (1954)

    ADS  Google Scholar 

  7. R.J. Blin-Stoyle, Rev. Mod. Phys. 28(1), 75–101 (1956)

    ADS  Google Scholar 

  8. B. Bremond, Nucl. Phys. 35, 49–60 (1962)

    Google Scholar 

  9. A.B. Migdal, Nucl. Phys. 75, 441–469 (1966)

    Google Scholar 

  10. C. Ekstrom, H. Rubinsztein, P. Moller, Phys. Scr. 14, 199–217 (1976)

    ADS  Google Scholar 

  11. G. Neyens, Rep. Prog. Phys. 66(4), 633–689 (2003)

    ADS  Google Scholar 

  12. J.M. Yao, H. Chen, J. Meng, Phys. Rev. C 74, 024307 (2006)

    ADS  Google Scholar 

  13. I.N. Borzov, E.E. Saperstein, S.V. Tolokonnikov, Phys. At. Nucl. 71(3), 469–492 (2008)

    Google Scholar 

  14. A. Arima, H. Horie, Prog. Theor. Phys. 11(4), 509 (1954)

    ADS  Google Scholar 

  15. H. Noya, A. Arima, H. Horie, Prog. Theor. Phys. Suppl. 8, 33 (1958)

    ADS  Google Scholar 

  16. Z. Bochnacki, S. Ogaza, Nucl. Phys. 69, 186–192 (1965)

    Google Scholar 

  17. A.A. Kuliev, N.I. Pyatov, Sov. J. Nucl. Phys. 9, 185–189 (1969)

    Google Scholar 

  18. A.A. Kuliev, N.I. Pyatov, Kuliev, Sov. J. Nucl. Phys. 9, 560–563 (1969)

    Google Scholar 

  19. A. Arima, Prog. Part. Nucl. Phys. 1, 41 (1978)

    ADS  Google Scholar 

  20. Y. Nedjadi, J.R. Rook, J. Phys. G Nucl. Part Phys. 15, 589–600 (1989)

    ADS  Google Scholar 

  21. K. Heyde, Hyperfine Interact. 75, 69–84 (1992)

    ADS  Google Scholar 

  22. J. Nag, M.K. Pal, Nucl. Phys. A 371, 393–404 (1981)

    ADS  Google Scholar 

  23. L. Zamick, Y.Y. Sharon, S.J.Q. Robinson, Phys. Rev. C 82, 067303 (2010)

    ADS  Google Scholar 

  24. J. Li, J. Meng, P. Ring, J.M. Yao, A. Arima, Sci. China Phys. Mech. Astron. 54(2), 204 (2011)

    ADS  Google Scholar 

  25. E. Zhao, Chin. Sci. Bull. 57(34), 4394–4399 (2012)

    Google Scholar 

  26. L. Bonneau, N. Minkov, D.D. Duc, P. Quentin, J. Bartel, Phys. Rev. C 91, 054307 (2015)

    ADS  Google Scholar 

  27. L. Jian, J. Meng, Front. Phys. 13(6), 132109 (2018)

    Google Scholar 

  28. H. Yakut, E. Guliyev, M. Guner, E. Tabar, Z. Yildirim, Nucl. Phys. A 888, 23 (2012)

    ADS  Google Scholar 

  29. H. Yakut, E. Tabar, A.A. Kuliev, Zenginerler, P. Kaplan, Int. J. Mod. Phys. E 22, 1350076 (2013)

    ADS  Google Scholar 

  30. H. Yakut, E. Tabar, A.A. Kuliev, E. Guliyev, Cent. Eur. J. Phys. 12, 843 (2014)

    Google Scholar 

  31. E. Tabar, H. Yakut, A.A. Kuliev, Int. J. Mod. Phys. E 25, 1650053 (2016)

    ADS  Google Scholar 

  32. E. Tabar, H. Yakut, A.A. Kuliev, H. Quliyev, G. Hoşgör, Chin. Phys. C 41, 074101 (2017)

    ADS  Google Scholar 

  33. E. Tabar, Nucl. Phys. A 986, 150 (2019)

    ADS  Google Scholar 

  34. E. Tabar, Int. J. Mod. Phys. E 28(6), 1950040 (2019)

    ADS  Google Scholar 

  35. P.L. Sassarini, J. Dobaczewski, J. Bonnard, R.F. Garcia Ruiz, J. Phys. G Nucl. Part Phys. 49(11), 11LT01 (2022)

    Google Scholar 

  36. Z.L. Yuan, D.C. Tian, J. Li, Z.M. Niu, Chin. Phys. C 45(12), 124107 (2021)

    ADS  Google Scholar 

  37. J. Bonnarda, J. Dobaczewskia, G. Danneauxd, M. Kortelainend, Phys. Lett. B 843, 138014 (2023)

    Google Scholar 

  38. A. Landé, Phys. Rev. 46, 477 (1934)

    ADS  Google Scholar 

  39. O. Haxel, J. Hans, D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949)

    Google Scholar 

  40. M.G. Mayer, Phys. Rev. 75, 1969 (1949)

    ADS  Google Scholar 

  41. Y.T. Grin, M. Pavlichenkov, J. Exptl. Theor. Phys. 14(3), 679–681 (1962)

    Google Scholar 

  42. K. Sugawara, Prog. Theor. Phys. 35, 44–64 (1966)

    ADS  Google Scholar 

  43. O. Prior, F. Boehm, S.G. Nilsson, Nucl. Phys. A 110, 257–272 (1968)

    ADS  Google Scholar 

  44. E.M. De Guerra, S. Kowalski, Phys. Rev. C 20, 357 (1979)

    ADS  Google Scholar 

  45. E. Tabar, A.A. Kuliev, H. Yakut, G. Hoşgör, E. Kemah, Phys. Scr. 98(11), 115305 (2023)

    ADS  Google Scholar 

  46. A.A. Kuliev, N. Pyatov, Sov. J. Nucl. Phys. 20, 158–164 (1974)

    Google Scholar 

  47. A.A. Kuliev, R. Akkaya, M. Ilhan, E. Guliyev, C. Salamov, S. Selvi, Int. J. Mod. Phys. E 9, 249–261 (2000)

    ADS  Google Scholar 

  48. K.T. Flanagan et al., J. Phys. G Nucl. Part Phys. 39, 125101 (2012)

    Google Scholar 

  49. E. Tabar, H. Yakut, G. Hoşgör, E. Kemah, Nucl. Phys. A 1014, 122252 (2021)

    Google Scholar 

  50. E. Tabar, H. Yakut, G. Hoşgör, E. Kemah, Phys. Scr. 97, 065303 (2022)

    ADS  Google Scholar 

  51. E. Tabar, A.A. Kuliev, Nucl. Phys. A 964, 1–17 (2017)

    ADS  Google Scholar 

  52. E. Tabar, H. Yakut, A.A. Kuliev, Nucl. Phys. A 957, 33–50 (2017)

    ADS  Google Scholar 

  53. E. Tabar, H. Yakut, A.A. Kuliev, Nucl. Phys. A 981, 130–146 (2019)

    ADS  Google Scholar 

  54. J. Dudek, T. Werner, J. Phys. G Nucl. Phys. 4, 1543 (1978)

    ADS  Google Scholar 

  55. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1–139 (2016)

    ADS  Google Scholar 

  56. P. Möller, J.R. Nix, Nucl. Phys. A 536, 20–60 (1992)

    ADS  Google Scholar 

  57. V.G. Soloviev, Theory of Complex Nuclei (Pergamon, UK, 1976)

    Google Scholar 

  58. E. Guliyev, A.A. Kuliev, F. Ertugral, Nucl. Phys. A 915, 78–89 (2013)

    ADS  Google Scholar 

  59. Z. Zenginerler et al., Eur. Phys. J. A 49, 107 (2013)

    ADS  Google Scholar 

  60. E. Tabar, H. Yakut, A.A. Kuliev, Nucl. Phys. A 979, 143–164 (2018)

    ADS  Google Scholar 

  61. https://www.nndc.bnl.gov/nudat3/

  62. B.S. Ishkhanov, S.V. Sidorov, TYu. Tretyakova, E.V. Vladimirova, Chin. Phys. C 41, 094101 (2017)

    ADS  Google Scholar 

  63. M. Shamsuzzoha Basunia, Nucl. Data Sheets 102, 719–900 (2004)

    ADS  Google Scholar 

  64. F.G. Kondev, Nucl. Data Sheets 159, 1–412 (2019)

    ADS  Google Scholar 

  65. R.W. Tarara, C.P. Brown, Phys. Rev. C 19(3), 674–692 (1979)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. A.A. Kuliev for his valuable discussions. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project no. 121F267). G.Hoşgör and E. Kemah, MScs. were supported by the Council of Higher Education (CoHE) with 100/2000 PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tabar.

Additional information

Communicated by Dario Vretenar

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabar, E., Yakut, H., Hoşgör, G. et al. Polarization effects on the rotational gyromagnetic ratio and magnetic dipole moments of 175,177,177mYb. Eur. Phys. J. A 59, 307 (2023). https://doi.org/10.1140/epja/s10050-023-01223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01223-0

Navigation