Skip to main content
Log in

Kinematics reconstruction in solenoidal spectrometers operated in active target mode

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We discuss the reconstruction of low-energy nuclear reaction kinematics from charged-particle tracks in solenoidal spectrometers working in Active Target Time Projection Chamber mode. In this operation mode, reaction products are tracked within the active gas medium of the Active Target with a three dimensional space point cloud. We have inferred the reaction kinematics from the point cloud using an algorithm based on a linear quadratic estimator (Kalman filter). The performance of this algorithm has been evaluated using experimental data from nuclear reactions measured with the Active Target Time Projection Chamber (AT-TPC) detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used in this publication is available upon request.]

References

  1. Reaching for the horizon: The 2015 long range plan for nuclear science. 9 2015

  2. D. Shapira, Nuclear reaction studies using inverse kinematics. Technical report, United States, 1985. CONF-8509176–

  3. K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G: Nucl. Part. Phys. 45(3), 033002 (2018)

    Article  ADS  Google Scholar 

  4. W.N. Catford, What Can We Learn from Transfer, and How Is Best to Do It? (Springer, Berlin, 2014), pp.67–122

    Google Scholar 

  5. Richard York. FRIB: A New Accelerator Facility for the Production of and Experiments with Rare Isotope Beams. In Particle Accelerator Conference (PAC 09), page MO3GRI03, 2010

  6. J. Eschke, International facility for antiproton and ion research (FAIR) at GSI, darmstadt. J. Phys. G: Nucl. Part. Phys. 31(6), S967–S973 (2005)

    Article  ADS  Google Scholar 

  7. M.J.G. Borge, Highlights of the isolde facility and the hie-isolde project. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376:408–412, 2016. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A. (2015)

  8. G.C. Ball, G. Hackman, R. Krücken, The TRIUMF-ISAC facility: two decades of discovery with rare isotope beams. Phys. Scr. 91(9), 093002 (2016)

    Article  ADS  Google Scholar 

  9. Y.J. Kim, Current status of experimental facilities at raon. Nucl. Instrum. Methods Phys. Res., Sect. B 463, 408–414 (2020)

    Article  ADS  Google Scholar 

  10. M.S. Wallace, M.A. Famiano, M.-J. van Goethem, A.M. Rogers, W.G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, B.E. Nett, D.J. Oostdyk, R. Krishnasamy, M.B. Tsang, R.T. de Souza, S. Hudan, L.G. Sobotka, R.J. Charity, J. Elson, G.L. Engel, The high resolution array (hira) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 583(2), 302–312 (2007)

    Article  ADS  Google Scholar 

  11. E. Pollacco, D. Beaumel, P. Roussel-Chomaz, E. Atkin, P. Baron, J. P. Baronick, E. Becheva, Y. Blumenfeld, A. Boujrad, A. Drouart, F. Druillole, P. Edelbruck, M. Gelin, A. Gillibert, Ch. Houarner, V. Lapoux, L. Lavergne, G. Leberthe, L. Leterrier, V. Le Ven, F. Lugiez, L. Nalpas, L. Olivier, B. Paul, B. Raine, A. Richard, M. Rouger, F. Saillant, F. Skaza, M. Tripon, M. Vilmay, E. Wanlin, and M. Wittwer. Must2: A new generation array for direct reaction studies. In Carl J. Gross, Witold Nazarewicz, and Krzysztof P. Rykaczewski, editors, The 4th International Conference on Exotic Nuclei and Atomic Masses, pages 287–288, (Springer, Berlin, 2005)

  12. A.H. Wuosmaa, J.P. Schiffer, B.B. Back, C.J. Lister, K.E. Rehm, A solenoidal spectrometer for reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res., Sect. A 580(3), 1290–1300 (2007)

    Article  ADS  Google Scholar 

  13. J.C. Lighthall, B.B. Back, S.I. Baker, S.J. Freeman, H.Y. Lee, B.P. Kay, S.T. Marley, K.E. Rehm, J.E. Rohrer, J.P. Schiffer, D.V. Shetty, A.W. Vann, J.R. Winkelbauer, A.H. Wuosmaa, Commissioning of the helios spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 622(1), 97–106 (2010)

    Article  ADS  Google Scholar 

  14. B.B. Back, S.I. Baker, B.A. Brown, C.M. Deibel, S.J. Freeman, B.J. DiGiovine, C.R. Hoffman, B.P. Kay, H.Y. Lee, J.C. Lighthall, S.T. Marley, R.C. Pardo, K.E. Rehm, J.P. Schiffer, D.V. Shetty, A.W. Vann, J. Winkelbauer, A.H. Wuosmaa, First experiment with helios: The structure of \(^{13}\textbf{B} \). Phys. Rev. Lett. 104, 132501 (2010)

    Article  ADS  Google Scholar 

  15. D. Santiago-Gonzalez, K. Auranen, M.L. Avila, A.D. Ayangeakaa, B.B. Back, S. Bottoni, M.P. Carpenter, J. Chen, C.M. Deibel, A.A. Hood, C.R. Hoffman, R.V.F. Janssens, C.L. Jiang, B.P. Kay, S.A. Kuvin, A. Lauer, J.P. Schiffer, J. Sethi, R. Talwar, I. Wiedenhöver, J. Winkelbauer, S. Zhu, Probing the single-particle character of rotational states in \(^{19}{\rm F}\) using a short-lived isomeric beam. Phys. Rev. Lett. 120, 122503 (2018)

    Article  ADS  Google Scholar 

  16. T.L. Tang, B.P. Kay, C.R. Hoffman, J.P. Schiffer, D.K. Sharp, L.P. Gaffney, S.J. Freeman, M.R. Mumpower, A. Arokiaraj, E.F. Baader, P.A. Butler, W.N. Catford, G. de Angelis, F. Flavigny, M.D. Gott, E.T. Gregor, J. Konki, M. Labiche, I.H. Lazarus, P.T. MacGregor, I. Martel, R.D. Page, Zs. Podolyák, O. Poleshchuk, R. Raabe, F. Recchia, J. F. Smith, S. V. Szwec, and J. Yang, First exploration of neutron shell structure below lead and beyond \(n=126\). Phys. Rev. Lett. 124, 062502 (2020)

  17. SOLARIS, A Solenoidal Spectrometer Apparatus for Reaction Studies White Paper. Technical report, 2018

  18. Y. Ayyad, D. Bazin, S. Beceiro-Novo, M. Cortesi, W. Mittig, Physics and technology of time projection chambers as active targets. Eur. Phys. J. A 54(10), 181 (2018)

    Article  ADS  Google Scholar 

  19. D. Bazin, T. Ahn, Y. Ayyad, S. Beceiro-Novo, A.O. Macchiavelli, W. Mittig, J.S. Randhawa, Low energy nuclear physics with active targets and time projection chambers. Prog. Part. Nucl. Phys. 114, 103790 (2020)

    Article  Google Scholar 

  20. S. Beceiro-Novo, T. Ahn, D. Bazin, W. Mittig, Active targets for the study of nuclei far from stability. Prog. Part. Nucl. Phys. 84, 124–165 (2015)

    Article  ADS  Google Scholar 

  21. Spectrometers Accelerators, J. Bradt, D. Bazin, F. Abu-Nimeh, T. Ahn, Y. Ayyad, S. Beceiro Novo, L. Carpenter, M. Cortesi, M.P. Kuchera, W.G. Lynch, W. Mittig, S. Rost, N. Watwood, J. Yurkon, Commissioning of the active-target time projection chamber. Nuclear Instruments and Methods in Physics Research Section A Detectors and Associated Equipment 875, 65–79 (2017)

  22. O. Poleshchuk, R. Raabe, S. Ceruti, A. Ceulemans, H. De Witte, T. Marchi, A. Mentana, J. Refsgaard, J. Yang, The specmat active target. Nucl. Instrum. Methods Phys. Res., Sect. A 1015, 165765 (2021)

    Article  Google Scholar 

  23. J. Bradt, Y. Ayyad, D. Bazin, W. Mittig, T. Ahn, S. Beceiro Novo, B.A. Brown, L. Carpenter, M. Cortesi, M.P. Kuchera, W.G. Lynch, S. Rost, N. Watwood, J. Yurkon, J. Barney, U. Datta, J. Estee, A. Gillibert, J. Manfredi, P. Morfouace, D. Pérez-Loureiro, E. Pollacco, J. Sammut, S. Sweany, Study of spectroscopic factors at n=29 using isobaric analogue resonances in inverse kinematics. Phys. Lett. B 778, 155–160 (2018)

    Article  ADS  Google Scholar 

  24. J.S. Randhawa, Y. Ayyad, W. Mittig, Z. Meisel, T. Ahn, S. Aguilar, H. Alvarez-Pol, D.W. Bardayan, D. Bazin, S. Beceiro-Novo, D. Blankstein, L. Carpenter, M. Cortesi, D. Cortina-Gil, P. Gastis, M. Hall, S. Henderson, J.J. Kolata, T. Mijatovic, F. Ndayisabye, P. O’Malley, J. Pereira, A. Pierre, H. Robert, C. Santamaria, H. Schatz, J. Smith, N. Watwood, J.C. Zamora, First direct measurement of \(^{22}\rm Mg{(\alpha , p)^{25}\rm Al}\) and implications for x-ray burst model-observation comparisons. Phys. Rev. Lett. 125, 202701 (2020)

    Article  ADS  Google Scholar 

  25. Rudolf Frühwirth, Meinhard Regler, Rudolf K Bock, H Grote, D Notz, Meinhard Regler, and Rudolf Frühwirth. Data analysis techniques for high-energy physics; 2nd ed. Cambridge monographs on particle physics, nuclear physics, and cosmology. Cambridge Univ. Press, Cambridge, 2000

  26. C. Dalitz, Y. Ayyad, J. Wilberg, L. Aymans, D. Bazin, W. Mittig, Automatic trajectory recognition in active target time projection chambers data by means of hierarchical clustering. Comput. Phys. Commun. 235, 159–168 (2019)

    Article  ADS  Google Scholar 

  27. R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  28. R. Frühwirth, Application of kalman filtering to track and vertex fitting. Nucl. Instrum. Methods Phys. Res., Sect. A 262(2), 444–450 (1987)

    Article  ADS  Google Scholar 

  29. Y. Ayyad, W. Mittig, D. Bazin, S. Beceiro-Novo, M. Cortesi, Novel particle tracking algorithm based on the random sample consensus model for the active target time projection chamber (at-tpc). Nucl. Instrum. Methods Phys. Res., Sect. A 880, 166–173 (2018)

    Article  ADS  Google Scholar 

  30. J.C. Zamora, G.F. Fortino, Tracking algorithms for tpcs using consensus-based robust estimators. Nucl. Instrum. Methods Phys. Res., Sect. A 988, 164899 (2021)

    Article  Google Scholar 

  31. M. Cortesi, S. Rost, W. Mittig, Y. Ayyad-Limonge, D. Bazin, J. Yurkon, A. Stolz, Multi-layer thick gas electron multiplier (m-thgem): A new mpgd structure for high-gain operation at low-pressure. Rev. Sci. Instrum. 88(1), 013303 (2017)

    Article  ADS  Google Scholar 

  32. D. Suzuki, M. Ford, D. Bazin, W. Mittig, W.G. Lynch, T. Ahn, S. Aune, E. Galyaev, A. Fritsch, J. Gilbert, F. Montes, A. Shore, J. Yurkon, J.J. Kolata, J. Browne, A. Howard, A.L. Roberts, X.D. Tang, Prototype at-tpc: Toward a new generation active target time projection chamber for radioactive beam experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 691, 39–54 (2012)

    Article  ADS  Google Scholar 

  33. Y. Ayyad, B. Olaizola, W. Mittig, G. Potel, V. Zelevinsky, M. Horoi, S. Beceiro-Novo, M. Alcorta, C. Andreoiu, T. Ahn, M. Anholm, L. Atar, A. Babu, D. Bazin, N. Bernier, S.S. Bhattacharjee, M. Bowry, R. Caballero-Folch, M. Cortesi, C. Dalitz, E. Dunling, A.B. Garnsworthy, M. Holl, B. Kootte, K.G. Leach, J.S. Randhawa, Y. Saito, C. Santamaria, P. C. E. Svensson, R. Umashankar, N. Watwood, D. Yates, Direct observation of proton emission in \(^{11}{\rm Be}\). Phys. Rev. Lett. 123, 082501 (2019)

  34. P. Billoir, R. Frühwirth, M. Regler, Track element merging strategy and vertex fitting in complex modular detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 241(1), 115–131 (1985)

    Article  ADS  Google Scholar 

  35. D. Stampfer, M. Regler, R. Frühwirth, Track fitting with energy loss. Comput. Phys. Commun. 79(2), 157–164 (1994)

    Article  ADS  Google Scholar 

  36. R. Fruhwirth, M. Regler, R.K. Bock, H. Grote, D. Notz, Data Analysis Techniques for High-Energy Physics (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  37. C. Höppner, S. Neubert, B. Ketzer, S. Paul, A novel generic framework for track fitting in complex detector systems. Nucl. Instrum. Methods Phys. Res., Sect. A 620(2), 518–525 (2010)

    Article  ADS  Google Scholar 

  38. F. Daum, Nonlinear filters: beyond the kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005)

    Article  Google Scholar 

  39. J. Rauch, Dissertation (Technische Universität München, München, 2021)

    Google Scholar 

  40. A. Noori, I. Fleck, Bivariate normal distribution for finding inliers in hough space for a time projection chamber. EPJ Web Conf. 150, 00010 (2017)

    Article  Google Scholar 

  41. Adam Anthony, Yassid Ayyad, Curtis Hunt, Héctor Alvarez Pol, Juan Zamora, Nabin Rijal, Alicia Muñoz Ramos, Ari Andalib, Ruchi Mahajan, Simon Giraud, Wieske Joseph, and Javier Diaz. Attpcroot, October 2023

  42. M. Al-Turany, D. Bertini, R. Karabowicz, D. Kresan, P. Malzacher, T. Stockmanns, F. Uhlig, The fairroot framework. J. Phys: Conf. Ser. 396(2), 022001 (2012)

    Google Scholar 

  43. Y. Giomataris, P. Rebourgeard, J.P. Robert, G. Charpak, Micromegas: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Methods Phys. Res., Sect. A 376(1), 29–35 (1996)

    Article  ADS  Google Scholar 

  44. J.F. Ziegler et al., SRIM - The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268(11), 1818–1823 (2010)

    Article  ADS  Google Scholar 

  45. E. Prencipe, Customization of the genfit2 fitting package in p. EPJ Web Conf. 127, 00013 (2016)

    Article  Google Scholar 

  46. Brookhaven National Laboratory National Nuclear Data Center. Nudat (nuclear structure and decay data), March 18, 2008 2008

  47. W.R. Lozowski, Three diverse target preparations: 14c (12 mg/cm2), 71ga24mg (12 mg/cm271ga, 3 mg/cm224mg), and 66,67zn (1.8-14.9 mg/cm2). Nucl. Instrum. Methods Phys. Res., Sect. A 282(1), 54–61 (1989)

    Article  ADS  Google Scholar 

  48. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  49. Rene Brun and Fons Rademakers. Root - an object oriented data analysis framework. In AIHENP’96 Workshop, Lausane, volume 389, pages 81–86, 1996

  50. E.C. Pollacco, G.F. Grinyer, F. Abu-Nimeh, T. Ahn, S. Anvar, A. Arokiaraj, Y. Ayyad, H. Baba, M. Babo, P. Baron, D. Bazin, S. Beceiro-Novo, C. Belkhiria, M. Blaizot, B. Blank, J. Bradt, G. Cardella, L. Carpenter, S. Ceruti, E. De Filippo, E. Delagnes, S. De Luca, H. De Witte, F. Druillole, B. Duclos, F. Favela, A. Fritsch, J. Giovinazzo, C. Gueye, T. Isobe, P. Hellmuth, C. Huss, B. Lachacinski, A.T. Laffoley, G. Lebertre, L. Legeard, W.G. Lynch, T. Marchi, L. Martina, C. Maugeais, W. Mittig, L. Nalpas, E.V. Pagano, J. Pancin, O. Poleshchuk, J.L. Pedroza, J. Pibernat, S. Primault, R. Raabe, B. Raine, A. Rebii, M. Renaud, T. Roger, P. Roussel-Chomaz, P. Russotto, G. Saccà, F. Saillant, P. Sizun, D. Suzuki, J.A. Swartz, A. Tizon, A. Trifiró, N. Usher, G. Wittwer, J.C. Yang, Get: A generic electronics system for tpcs and nuclear physics instrumentation. Nucl. Instrum. Methods Phys. Res., Sect. A 887, 81–93 (2018)

    Article  ADS  Google Scholar 

  51. A. Obertelli, A. Delbart, S. Anvar, L. Audirac, G. Authelet, H. Baba, B. Bruyneel, D. Calvet, F. Château, A. Corsi, P. Doornenbal, J.-M. Gheller, A. Giganon, C. Lahonde-Hamdoun, D. Leboeuf, D. Loiseau, A. Mohamed, J.P. Mols, H. Otsu, C. Péron, A. Peyaud, E.C. Pollacco, G. Prono, J.-Y. Rousse, C. Santamaria, T. Uesaka, Minos: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. The European Physical Journal A 50(1), 8 (2014)

    Article  Google Scholar 

  52. M. H. Macfarlane and S. C. Pieper. Ptolemy: a program for heavy-ion direct-reaction calculations. Technical report, United States, 1978. ANL–76-11(Rev1)

  53. J. Chen, B.P. Kay, T.L. Tang, I.A. Tolstukhin, C.R. Hoffman, H. Li, P. Yin, X. Zhao, P. Maris, J.P. Vary, G. Li, J.L. Lou, M.L. Avila, Y. Ayyad, S. Bennett, D. Bazin, J.A. Clark, S.J. Freeman, H. Jayatissa, C. Müller-Gatermann, A. Munoz-Ramos, D. Santiago-Gonzalez, D.K. Sharp, A.H. Wuosmaa, C.X. Yuan, Probing the quadrupole transition strength of \(^{15}\rm C \) via deuteron inelastic scattering. Phys. Rev. C 106, 064312 (2022)

Download references

Acknowledgements

We thank D. Schumann, E. Maugeri and S. Heinitz from the Paul Scherrer Institute (PSI) for providing the \(^{10}\)Be material. This material is based upon work supported by NSF’s National Superconducting Cyclotron Laboratory, which is a major facility fully funded by the National Science Foundation under award PHY-1565546. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a U.S. DOE Office of Science User Facility under Award No. DE-SC0000661 SOLARIS is funded by the DOE Office of Science under the FRIB Cooperative Agreement DE-SC0000661. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02- 06CH11357 (Argonne). This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility. This work has received financial support from Xunta de Galicia (CIGUS Network of Research Centers). Y. A. acknowledges the support by the Spanish Ministerio de Economía y Competitividad through the Programmes “Ramón y Cajal” with the Grant No. RYC2019-028438-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassid Ayyad.

Additional information

Communicated by Alexandre Obertelli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyad, Y., Anthony, A.K., Bazin, D. et al. Kinematics reconstruction in solenoidal spectrometers operated in active target mode. Eur. Phys. J. A 59, 294 (2023). https://doi.org/10.1140/epja/s10050-023-01205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01205-2

Navigation