Skip to main content
Log in

Ellipticity of dilepton production from a hot and magnetized hadronic medium

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the azimuthal angle and transverse momentum dependence of dilepton production from hot and magnetized hadronic matter using \(\rho ^0\)-meson dominance. The thermomagnetic spectral function of the \(\rho ^0\) is evaluated using the real time method of thermal field theory and Schwinger proper-time formulation. A continuous spectrum is obtained in which there is sizeable Landau cut contributions in the low invariant mass region as a consequence of finite background field. The emission rate of the dileptons is found to be significantly anisotropic in this region and the later effectively increases with the strength of the background field. In addition, we also evaluate the elliptic flow parameter (\(v_2\)) as a function of invariant mass for different values of magnetic field and temperature. We find that in low invariant mass region \(v_2\) remains positive at lower values of eB signifying that the production rate could be larger along the direction transverse to the background field. This behaviour is consistent with the angular dependence of dilepton production rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and thus the manuscript has no associated data. All the analytical expressions required to generate the plots are given in the manuscript.]

References

  1. C.Y. Wong, Introduction to High-Energy Heavy Ion Collisions (World Scientific, 1995)

    Google Scholar 

  2. S. Sarkar, H. Satz, B. Sinha (eds.), The Physics of the Quark-Gluon Plasma, vol. 785 (Springer, 2010). https://doi.org/10.1007/978-3-642-02286-9

    Book  Google Scholar 

  3. W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions (World Scientific Publishing Company, 2010)

    Book  Google Scholar 

  4. H. Satz, Extreme States of Matter in Strong Interaction Physics. An Introduction, vol. 841 (Springer Verlag, New York, 2012). https://doi.org/10.1007/978-3-642-23908-3

    Book  Google Scholar 

  5. L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985). https://doi.org/10.1103/PhysRevD.31.545

    Article  ADS  Google Scholar 

  6. K. Kajantie, J.I. Kapusta, L.D. McLerran, A. Mekjian, Phys. Rev. D 34, 2746 (1986). https://doi.org/10.1103/PhysRevD.34.2746

    Article  ADS  Google Scholar 

  7. C. Gale, J.I. Kapusta, Phys. Rev. C 38, 2659 (1988). https://doi.org/10.1103/PhysRevC.38.2659

    Article  ADS  Google Scholar 

  8. H.A. Weldon, Phys. Rev. D 42, 2384 (1990). https://doi.org/10.1103/PhysRevD.42.2384

    Article  ADS  Google Scholar 

  9. P.V. Ruuskanen, Nucl. Phys. A 525, 255 (1991). https://doi.org/10.1016/0375-9474(91)90332-Z

    Article  ADS  Google Scholar 

  10. P.V. Ruuskanen, Nucl. Phys. A 544, 169 (1992). https://doi.org/10.1016/0375-9474(92)90572-2

    Article  ADS  Google Scholar 

  11. J. Alam, B. Sinha, S. Raha, Phys. Rep. 273, 243 (1996). https://doi.org/10.1016/0370-1573(95)00084-4

    Article  ADS  Google Scholar 

  12. J. Alam, S. Sarkar, P. Roy, T. Hatsuda, B. Sinha, Ann. Phys. 286, 159 (2001). https://doi.org/10.1006/aphy.2000.6091

    Article  ADS  Google Scholar 

  13. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298

    Article  ADS  Google Scholar 

  14. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  15. K. Tuchin, Phys. Rev. C 88, 024911 (2013). https://doi.org/10.1103/PhysRevC.88.024911

    Article  ADS  Google Scholar 

  16. K. Tuchin, Phys. Rev. C 93, 014905 (2016). https://doi.org/10.1103/PhysRevC.93.014905

    Article  ADS  Google Scholar 

  17. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013). https://doi.org/10.1155/2013/490495

    Article  MathSciNet  Google Scholar 

  18. U. Gursoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014). https://doi.org/10.1103/PhysRevC.89.054905

    Article  ADS  Google Scholar 

  19. G. Inghirami, L. Del Zanna, A. Beraudo, M.H. Moghaddam, F. Becattini, M. Bleicher, Eur. Phys. J. C 76, 659 (2016). https://doi.org/10.1140/epjc/s10052-016-4516-8

    Article  ADS  Google Scholar 

  20. G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D.E. Kharzeev, M. Bleicher, Eur. Phys. J. C 80, 293 (2020). https://doi.org/10.1140/epjc/s10052-020-7847-4

    Article  ADS  Google Scholar 

  21. P. Kalikotay, S. Ghosh, N. Chaudhuri, P. Roy, S. Sarkar, Phys. Rev. D 102, 076007 (2020). https://doi.org/10.1103/PhysRevD.102.076007

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Kadam, Mod. Phys. Lett. A 30, 1550031 (2015). https://doi.org/10.1142/S0217732315500315

    Article  ADS  Google Scholar 

  23. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 100, 114004 (2019). https://doi.org/10.1103/PhysRevD.100.114004

    Article  ADS  Google Scholar 

  24. A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh, V. Roy, Phys. Rev. D 102, 016016 (2020). https://doi.org/10.1103/PhysRevD.102.016016

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Ghosh, N. Haque, Phys. Rev. D 105, 114029 (2022). https://doi.org/10.1103/PhysRevD.105.114029

    Article  ADS  Google Scholar 

  26. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 99, 094031 (2019). https://doi.org/10.1103/PhysRevD.99.094031

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 102, 014030 (2020). https://doi.org/10.1103/PhysRevD.102.014030

    Article  MathSciNet  ADS  Google Scholar 

  28. S.K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V. Greco, Phys. Lett. B 768, 260 (2017). https://doi.org/10.1016/j.physletb.2017.02.046

    Article  ADS  Google Scholar 

  29. S. Chatterjee, P. Bozek, Phys. Lett. B 798, 134955 (2019). https://doi.org/10.1016/j.physletb.2019.134955

    Article  MathSciNet  Google Scholar 

  30. J. Adam et al., STAR. Phys. Rev. Lett. 123, 162301 (2019). https://doi.org/10.1103/PhysRevLett.123.162301

    Article  ADS  Google Scholar 

  31. S. Acharya et al., ALICE. Phys. Rev. Lett. 125, 022301 (2020). https://doi.org/10.1103/PhysRevLett.125.022301

    Article  ADS  Google Scholar 

  32. K. Tuchin, Phys. Rev. C 87, 024912 (2013). https://doi.org/10.1103/PhysRevC.87.024912

    Article  ADS  Google Scholar 

  33. K. Tuchin, Phys. Rev. C 88, 024910 (2013). https://doi.org/10.1103/PhysRevC.88.024910

    Article  ADS  Google Scholar 

  34. N. Sadooghi, F. Taghinavaz, Annals Phys. 376, 218 (2017). https://doi.org/10.1016/j.aop.2016.11.008

    Article  ADS  Google Scholar 

  35. A. Bandyopadhyay, C.A. Islam, M.G. Mustafa, Phys. Rev. D 94, 114034 (2016). https://doi.org/10.1103/PhysRevD.94.114034

    Article  ADS  Google Scholar 

  36. A. Bandyopadhyay, S. Mallik, Phys. Rev. D 95, 074019 (2017). https://doi.org/10.1103/PhysRevD.95.074019

  37. S. Ghosh, V. Chandra, Phys. Rev. D 98, 076006 (2018). https://doi.org/10.1103/PhysRevD.98.076006

    Article  ADS  Google Scholar 

  38. C.A. Islam, A. Bandyopadhyay, P.K. Roy, S. Sarkar, Phys. Rev. D 99, 094028 (2019). https://doi.org/10.1103/PhysRevD.99.094028

    Article  ADS  Google Scholar 

  39. S. Ghosh, N. Chaudhuri, S. Sarkar, P. Roy, Phys. Rev. D 101, 096002 (2020). https://doi.org/10.1103/PhysRevD.101.096002

    Article  ADS  Google Scholar 

  40. K. Hattori, H. Taya, S. Yoshida, JHEP 01, 093 (2021). https://doi.org/10.1007/JHEP01(2021)093

    Article  ADS  Google Scholar 

  41. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Phys. Rev. D 103, 096021 (2021). https://doi.org/10.1103/PhysRevD.103.096021

    Article  ADS  Google Scholar 

  42. X. Wang, I.A. Shovkovy, Phys. Rev. D 106, 036014 (2022). https://doi.org/10.1103/PhysRevD.106.036014

    Article  ADS  Google Scholar 

  43. A. Das, A. Bandyopadhyay, C.A. Islam, Phys. Rev. D 106, 056021 (2022). https://doi.org/10.1103/PhysRevD.106.056021

    Article  ADS  Google Scholar 

  44. R. Mondal, N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Phys. Rev. D 107, 036017 (2023). https://doi.org/10.1103/PhysRevD.107.036017

    Article  ADS  Google Scholar 

  45. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996). https://doi.org/10.1007/s002880050141

    Article  Google Scholar 

  46. P.V. Ruuskanen, Adv. Ser. Direct. High Energy Phys. 6, 519 (1990)

    Article  ADS  Google Scholar 

  47. S. Mallik, S. Sarkar, Hadrons at Finite Temperature (Cambridge University Press, Cambridge, 2016). https://doi.org/10.1017/9781316535585

    Book  Google Scholar 

  48. C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991). https://doi.org/10.1016/0550-3213(91)90459-B

    Article  ADS  Google Scholar 

  49. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)

    Google Scholar 

  50. M.L. Bellac, Thermal field theory, in Cambridge Monographs on Mathematical Physics. (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  51. S. Ghosh, A. Mukherjee, P. Roy, S. Sarkar, Phys. Rev. D 99, 096004 (2019)

    Article  ADS  Google Scholar 

  52. S. Ghosh, A. Mukherjee, N. Chaudhuri, P. Roy, S. Sarkar, Phys. Rev. D 101, 056023 (2020). https://doi.org/10.1103/PhysRevD.101.056023

    Article  ADS  Google Scholar 

  53. O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000). https://doi.org/10.1103/PhysRevC.62.025207

    Article  ADS  Google Scholar 

  54. A. Ayala, P. Mercado, C. Villavicencio, Phys. Rev. C 95, 014904 (2017). https://doi.org/10.1103/PhysRevC.95.014904

    Article  ADS  Google Scholar 

  55. X. Wang, I. Shovkovy, Phys. Rev. D 104, 056017 (2021). https://doi.org/10.1103/PhysRevD.104.056017

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.M., N.C., S.S. and P.R. are funded by the Department of Atomic Energy (DAE), Government of India. S.G. is funded by the Department of Higher Education, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Ghosh.

Additional information

Communicated by Ralf Rapp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Chaudhuri, N., Ghosh, S. et al. Ellipticity of dilepton production from a hot and magnetized hadronic medium. Eur. Phys. J. A 59, 287 (2023). https://doi.org/10.1140/epja/s10050-023-01201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01201-6

Navigation