Skip to main content
Log in

On the dynamical kernels of fermionic equations of motion in strongly-correlated media

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Two-point fermionic propagators in strongly-correlated media are considered with an emphasis on the dynamical interaction kernels of their equations of motion (EOM). With the many-body Hamiltonian confined by a two-body interaction, the EOMs for the two-point fermionic propagators acquire the Dyson form and, before taking any approximation, the interaction kernels decompose into the static and dynamical (time-dependent) contributions. The latter translate to the energy-dependent and the former map to the energy-independent terms in the energy domain. We dwell particularly on the energy-dependent terms, which generate long-range correlations while making feedback on their short-range static counterparts. The origin, forms, and various approximations for the dynamical kernels of one-fermion and two-fermion propagators, most relevant in the intermediate-coupling regime, are discussed. Applications to the electromagnetic dipole response of \(^{68,70}\)Ni and low-energy quadrupole response of \(^{114,116,124}\)Sn are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. T. Matsubara, Progress in Theoretical Physics 14(351) (1955)

  2. K.M. Watson, Applications of scattering theory to quantum statistical mechanics. Phys. Rev. 103, 489–498 (1956). https://doi.org/10.1103/PhysRev.103.489

    Article  MathSciNet  ADS  Google Scholar 

  3. K.A. Brueckner, C.A. Levinson, Approximate reduction of the many-body problem for strongly interacting particles to a problem of self-consistent fields. Phys. Rev. 97, 1344–1352 (1955). https://doi.org/10.1103/PhysRev.97.1344

    Article  ADS  Google Scholar 

  4. K.A. Brueckner, Many-body problem for strongly interacting particles. ii. linked cluster expansion. Phys. Rev. 100, 36–45 (1955). https://doi.org/10.1103/PhysRev.100.36

    Article  ADS  Google Scholar 

  5. P.C. Martin, J.S. Schwinger, Theory of many particle systems. 1. Physical Review 115, 1342–1373 (1959). https://doi.org/10.1103/PhysRev.115.1342

    Article  Google Scholar 

  6. S. Ethofer, On the energy-dependence of the mass-operator and the effective-interaction. Zeitschrift für Physik A 225(4), 353–363 (1969)

    MathSciNet  ADS  Google Scholar 

  7. P. Schuck, S. Ethofer, Nucl. Phys. A 212, 269 (1973)

    ADS  Google Scholar 

  8. L.P. Gorkov, Soviet Physics JETP 7, 505 (1958)

    Google Scholar 

  9. L.P. Kadanoff, P.C. Martin, Theory of many-particle systems. ii. superconductivity. Phys. Rev. 124, 670–697 (1961). https://doi.org/10.1103/PhysRev.124.670

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Ethofer, P. Schuck, Z. Phys. 228, 264 (1969)

    ADS  Google Scholar 

  11. D.J. Rowe, Equations-of-Motion Method and the Extended Shell Model. Review of Modern Physics 40, 153–166 (1968). https://doi.org/10.1103/RevModPhys.40.153

    Article  ADS  Google Scholar 

  12. P. Schuck, Mode coupling theory for the description of two particle-two hole states of208pb. Zeitschrift für Physik A 279(1), 31–40 (1976)

    ADS  Google Scholar 

  13. S. Adachi, P. Schuck, Landau’s collision term in the memory function approach to the nuclear response function and the spreading width of giant resonances. Nucl. Phys. A 496, 485 (1989)

    ADS  Google Scholar 

  14. P. Danielewicz, P. Schuck, Imaginary potentials from many-body theory. Nucl. Phys. A 567, 78–96 (1994). https://doi.org/10.1016/0375-9474(94)90727-7

    Article  ADS  Google Scholar 

  15. J. Dukelsky, G. Röpke, P. Schuck, Generalized Brückner-Hartree-Fock theory and self-consistent RPA. Nucl. Phys. A 628, 17–40 (1998). https://doi.org/10.1016/S0375-9474(97)00606-4

    Article  ADS  Google Scholar 

  16. E. Litvinova, P. Schuck, Toward an accurate strongly-coupled many-body theory within the equation of motion framework. Phys. Rev. C 100, 064320 (2019)

    ADS  Google Scholar 

  17. M.L. Tiago, P. Kent, R.Q. Hood, F.A. Reboredo, Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J. Chem. Phys. 129(8), 084311 (2008)

    ADS  Google Scholar 

  18. J.I. Martinez, J. García-Lastra, M. López, J. Alonso, Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations. J. Chem. Phys. 132(4), 044314 (2010)

    ADS  Google Scholar 

  19. D. Sangalli, P. Romaniello, G. Onida, A. Marini, J. Chem. Phys. 134, 034115 (2011)

    ADS  Google Scholar 

  20. P. Schuck, M. Tohyama, Self-consistent RPA and the time-dependent density matrix approach. European Physical Journal A 52(10), 307 (2016). https://doi.org/10.1140/epja/i2016-16307-7

    Article  ADS  Google Scholar 

  21. V. Olevano, J. Toulouse, P. Schuck, A formally exact one-frequency-only Bethe-Salpeter-like equation. Similarities and differences between GW +BSE and self-consistent RPA. J. Chem. Phys. 150, 084112 (2018). https://doi.org/10.1063/1.5080330. ([physics.chem-ph])

    Article  ADS  Google Scholar 

  22. P. Schuck, D.S. Delion, J. Dukelsky, M. Jemai, E. Litvinova, G. Roepke, M. Tohyama, Phys. Rep. 929, 1–84 (2021)

    MathSciNet  ADS  Google Scholar 

  23. P. Schuck, Mean-Field Theory for Fermion Pairs and the ab initio Particle-Vibration-Coupling Approach. European Physical Journal A 55(12), 250 (2019). https://doi.org/10.1140/epja/i2019-12798-x

    Article  ADS  Google Scholar 

  24. E. Litvinova, P. Schuck, Many-body correlations in nuclear superfluidity. Phys. Rev. C 102, 034310 (2020). https://doi.org/10.1103/PhysRevC.102.034310

    Article  ADS  Google Scholar 

  25. E. Litvinova, P. Schuck, Nuclear superfluidity at finite temperature. Phys. Rev. C 104(4), 044330 (2021)

    ADS  Google Scholar 

  26. A. Bohr, B.R. Mottelson, Nuclear Structure vol. 1. World Scientific (1969)

  27. A. Bohr, B.R. Mottelson, Nuclear Structure vol. 2. Benjamin, New York (1975)

  28. R.A. Broglia, P.F. Bortignon, Alpha-Vibrations. Phys. Lett. B65, 221–224 (1976). https://doi.org/10.1016/0370-2693(76)90167-2

    Article  ADS  Google Scholar 

  29. P.F. Bortignon, R. Broglia, D. Bes, R. Liotta, Nuclear field theory. Phys. Rep. 30(4), 305–360 (1977)

    ADS  Google Scholar 

  30. G. Bertsch, P. Bortignon, R. Broglia, Damping of nuclear excitations. Rev. Mod. Phys. 55(1), 287 (1983)

    ADS  Google Scholar 

  31. V. Tselyaev, Description of complex configurations in magic nuclei with the method of chronological decoupling of diagrams. Sov. J. Nucl. Phys. 50(5), 780–787 (1989)

    Google Scholar 

  32. E. Litvinova, V. Tselyaev, Quasiparticle time blocking approximation in coordinate space as a model for the damping of the giant dipole resonance. Phys. Rev. C 75(5), 054318 (2007)

    ADS  Google Scholar 

  33. V.G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons. Institute of Physics Publishing (1992)

  34. L.A. Malov, V.G. Soloviev, Fragmentation of single-particle states and neutron strength functions in deformed nuclei. Nucl. Phys. A 270, 87–107 (1976). https://doi.org/10.1016/0375-9474(76)90129-9

    Article  ADS  Google Scholar 

  35. V.I. Tselyaev, Subtraction method and stability condition in extended random-phase approximation theories. Phys. Rev. C 88(5), 054301 (2013)

    ADS  Google Scholar 

  36. E. Litvinova, P. Ring, V. Tselyaev, Particle-vibration coupling within covariant density functional theory. Phys. Rev. C 75(6), 064308 (2007)

    ADS  Google Scholar 

  37. E. Litvinova, P. Ring, V. Tselyaev, Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei. Phys. Rev. C 78(1), 014312 (2008)

    ADS  Google Scholar 

  38. E. Litvinova, P. Ring, V. Tselyaev, Mode coupling and the pygmy dipole resonance in a relativistic two-phonon model. Phys. Rev. Lett. 105(2), 022502 (2010)

    ADS  Google Scholar 

  39. E. Litvinova, P. Ring, V. Tselyaev, Relativistic two-phonon model for the low-energy nuclear response. Phys. Rev. C 88(4), 044320 (2013)

    ADS  Google Scholar 

  40. V. Tselyaev, N. Lyutorovich, J. Speth, P.-G. Reinhard, Self-consistency in the phonon space of the particle-phonon coupling model. Phys. Rev. C 97(4), 044308 (2018). https://doi.org/10.1103/PhysRevC.97.044308

    Article  ADS  Google Scholar 

  41. E. Litvinova, Relativistic approach to the nuclear breathing mode. Phys. Rev. C 107(4), 041302 (2023). https://doi.org/10.1103/PhysRevC.107.L041302

    Article  ADS  Google Scholar 

  42. E. Litvinova, Y. Zhang, Many-body theory for quasiparticle states in superfluid fermionic systems. Phys. Rev. C 104(4), 044303 (2021). https://doi.org/10.1103/PhysRevC.104.044303

    Article  ADS  Google Scholar 

  43. V. Sluys, D. Van Neck, M. Waroquier, J. Ryckebusch, Fragmentation of single-particle strength in spherical open-shell nuclei: Application to the spectral functions in 142 Nd. Nucl. Phys. A 551, 210–240 (1993). https://doi.org/10.1016/0375-9474(93)90479-H

    Article  ADS  Google Scholar 

  44. A.V. Avdeenkov, S.P. Kamerdzhiev, The Role of ground state correlations in the single particle strength of odd nuclei with pairing. Phys. Lett. B 459, 423–430 (1999). https://doi.org/10.1016/S0370-2693(99)00719-4

    Article  ADS  Google Scholar 

  45. A.V. Avdeenkov, S.P. Kamerdzhev, On the mechanisms of superfluidity in atomic nuclei. JETP Lett. 69, 715–720 (1999). https://doi.org/10.1134/1.568080

    Article  ADS  Google Scholar 

  46. F. Barranco, R. Broglia, G. Gori, E. Vigezzi, P. Bortignon, J. Terasaki, Surface vibrations and the pairing interaction in nuclei. Phys. Rev. Lett. 83(11), 2147 (1999)

    ADS  Google Scholar 

  47. F. Barranco, P. Bortignon, R. Broglia, G. Colò, P. Schuck, E. Vigezzi, X. Vinas, Pairing matrix elements and pairing gaps with bare, effective, and induced interactions. Phys. Rev. C 72(5), 054314 (2005)

    ADS  Google Scholar 

  48. V.I. Tselyaev, Quasiparticle time blocking approximation within the framework of generalized green function formalism. Phys. Rev. C 75(2), 024306 (2007)

    ADS  Google Scholar 

  49. E.V. Litvinova, A.V. Afanasjev, Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei. Phys. Rev. C 84(1), 014305 (2011)

    ADS  Google Scholar 

  50. E. Litvinova, Quasiparticle-vibration coupling in a relativistic framework: Shell structure of z= 120 isotopes. Phys. Rev. C 85(2), 021303 (2012)

    ADS  Google Scholar 

  51. A.V. Afanasjev, E. Litvinova, Impact of collective vibrations on quasiparticle states of open-shell odd-mass nuclei and possible interference with the tensor force. Phys. Rev. C 92(4), 044317 (2015)

    ADS  Google Scholar 

  52. A. Idini, G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Interweaving of elementary modes of excitation in superfluid nuclei through particle-vibration coupling: Quantitative account of the variety of nuclear structure observables. Phys. Rev. C 92(3), 031304 (2015)

    ADS  Google Scholar 

  53. V. Soma, T. Duguet, C. Barbieri, Ab-initio self-consistent gorkov-green’s function calculations of semi-magic nuclei. i. formalism at second order with a two-nucleon interaction. Phys. Rev. C 84, 064317 (2011). https://doi.org/10.1103/PhysRevC.84.064317

    Article  ADS  Google Scholar 

  54. V. Soma, C. Barbieri, T. Duguet, Ab-initio gorkov-green’s function calculations of open-shell nuclei. Phys. Rev. C 87(1), 011303 (2013). https://doi.org/10.1103/PhysRevC.87.011303

    Article  ADS  Google Scholar 

  55. V. Soma, C. Barbieri, T. Duguet, Ab initio self-consistent Gorkov-Green’s function calculations of semi-magic nuclei: Numerical implementation at second order with a two-nucleon interaction. Phys. Rev. C 89(2), 024323 (2014). https://doi.org/10.1103/PhysRevC.89.024323

    Article  ADS  Google Scholar 

  56. V. Somà, C. Barbieri, T. Duguet, P. Navrátil, Moving away from singly-magic nuclei with gorkov green’s function theory. European Physical Journal A 57(4), 135 (2021). https://doi.org/10.1140/epja/s10050-021-00437-4

    Article  ADS  Google Scholar 

  57. E. Litvinova, Y. Zhang, Microscopic response theory for strongly coupled superfluid fermionic systems. Phys. Rev. C 106(6), 064316 (2022). https://doi.org/10.1103/PhysRevC.106.064316

    Article  ADS  Google Scholar 

  58. D. Gambacurta, M. Grasso, F. Catara, Low-lying dipole response in the stable \({}^{40,48}\)ca nuclei with the second random-phase approximation. Phys. Rev. C 84, 034301 (2011). https://doi.org/10.1103/PhysRevC.84.034301

    Article  ADS  Google Scholar 

  59. D. Gambacurta, M. Grasso, J. Engel, Subtraction method in the second random-phase approximation: First applications with a skyrme energy functional. Phys. Rev. C 92, 034303 (2015). https://doi.org/10.1103/PhysRevC.92.034303

    Article  ADS  Google Scholar 

  60. Y. Niu, G. Colò, E. Vigezzi, Gamow-teller response and its spreading mechanism in doubly magic nuclei. Phys. Rev. C 90(5), 054328 (2014)

    ADS  Google Scholar 

  61. Y. Niu, Z. Niu, G. Colò, E. Vigezzi, Particle-vibration coupling effect on the \(\beta \) decay of magic nuclei. Phys. Rev. Lett. 114(14), 142501 (2015)

    ADS  Google Scholar 

  62. C. Robin, E. Litvinova, Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework. European Physical Journal A 52, 205 (2016)

    ADS  Google Scholar 

  63. C. Robin, E. Litvinova, Time-reversed particle-vibration loops and nuclear Gamow-Teller response. Phys. Rev. Lett. 123, 202501 (2019)

    ADS  Google Scholar 

  64. V.Y. Ponomarev, Microscopic studies of two-phonon giant resonances. Nucl. Phys. A 649, 243–247 (1999). https://doi.org/10.1016/S0375-9474(99)00068-8

    Article  ADS  Google Scholar 

  65. N. Lo Iudice, V.Y. Ponomarev, C. Stoyanov, A.V. Sushkov, V.V. Voronov, Low-energy nuclear spectroscopy in a microscopic multiphonon approach. J. Phys. G39(4), 043101 (2012). https://doi.org/10.1088/0954-3899/39/4/043101

    Article  ADS  Google Scholar 

  66. D. Savran et al., Fragmentation and systematics of the pygmy dipole resonance in the stable N=82 isotones. Phys. Rev. C 84, 024326 (2011). https://doi.org/10.1103/PhysRevC.84.024326

    Article  ADS  Google Scholar 

  67. N. Tsoneva, M. Spieker, H. Lenske, A. Zilges, Fine structure of the pygmy quadrupole resonance in \(^{112,114}\)Sn. Nucl. Phys. A 990, 183–198 (2019). https://doi.org/10.1016/j.nuclphysa.2019.07.008. ([nucl-th])

    Article  ADS  Google Scholar 

  68. H. Lenske, N. Tsoneva, Dissolution of shell structures and the polarizability of dripline nuclei. European Physical Journal A 55(12), 238 (2019). https://doi.org/10.1140/epja/i2019-12811-6

    Article  ADS  Google Scholar 

  69. P. Papakonstantinou, R. Roth, Second random phase approximation and renormalized realistic interactions. Phys. Lett. B 671(3), 356–360 (2009)

    ADS  Google Scholar 

  70. D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi, A. Porrino, Upgraded formulation of the nuclear eigenvalue problem in a microscopic multiphonon basis. Phys. Rev. C 85, 014313 (2012). https://doi.org/10.1103/PhysRevC.85.014313

    Article  ADS  Google Scholar 

  71. S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, First Principles Description of the Giant Dipole Resonance in \(^{16}\)O. Phys. Rev. Lett. 111(12), 122502 (2013). https://doi.org/10.1103/PhysRevLett.111.122502. ([nucl-th])

    Article  ADS  Google Scholar 

  72. F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio, A. Porrino, Dipole response in Sn132 within a self-consistent multiphonon approach. Phys. Rev. C 90(1), 014310 (2014). https://doi.org/10.1103/PhysRevC.90.014310

    Article  ADS  Google Scholar 

  73. S. Bacca, Giant and pigmy dipole resonances in 4he, 16,22o, 40ca from chiral nucleon-nucleon interactions. Phys. Rev. C 90(6), 064619 (2014)

    ADS  Google Scholar 

  74. F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio, A. Porrino, Dipole response in 208Pb within a self-consistent multiphonon approach. Phys. Rev. C 92, 054315 (2015). https://doi.org/10.1103/PhysRevC.92.054315

    Article  ADS  Google Scholar 

  75. G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, Microscopic multiphonon method for odd nuclei and its application to o17. Phys. Rev. C 94(6), 061301 (2016). https://doi.org/10.1103/PhysRevC.94.061301

    Article  ADS  Google Scholar 

  76. G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, Self-consistent quasiparticle formulation of a multiphonon method and its application to the neutron-rich o20 nucleus. Phys. Rev. C 93(4), 044314 (2016). https://doi.org/10.1103/PhysRevC.93.044314

    Article  ADS  Google Scholar 

  77. F. Raimondi, C. Barbieri, Nuclear electromagnetic dipole response with the Self-Consistent Green’s Function formalism. Phys. Rev. C 99(5), 054327 (2019). https://doi.org/10.1103/PhysRevC.99.054327. ([nucl-th])

    Article  ADS  Google Scholar 

  78. R. Brockmann, Relativistic hartree-fock description of nuclei. Phys. Rev. C 18, 1510–1524 (1978). https://doi.org/10.1103/PhysRevC.18.1510

    Article  ADS  Google Scholar 

  79. A. Boyussy, J.-F. Mathiott, N.V. Giai, S. Marcos, Phys. Rev. C 36, 380 (1987)

    ADS  Google Scholar 

  80. P. Poschenrieder, M.K. Weigel, Nuclear matter properties in the relativistic approximations. Phys. Lett. B 200, 231–234 (1988). https://doi.org/10.1016/0370-2693(88)90761-7

    Article  ADS  Google Scholar 

  81. P. Poschenrieder, M.K. Weigel, Nuclear matter problem in the relativistic green’s function approach. Phys. Rev. C 38, 471–486 (1988). https://doi.org/10.1103/PhysRevC.38.471

    Article  ADS  Google Scholar 

  82. P. Danielewicz, J.M. Namyslowski, Relativistic repulsive effects in nonrelativistic systems. Phys. Lett. B 81, 110–114 (1979). https://doi.org/10.1016/0370-2693(79)90500-8

    Article  ADS  Google Scholar 

  83. V.A. Karmanov, Relativistic descriptions of few-body systems. Few Body Systems 50, 61–67 (2011)

    ADS  Google Scholar 

  84. W.H. Dickhoff, C. Barbieri, Selfconsistent green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004). https://doi.org/10.1016/j.ppnp.2004.02.038

    Article  ADS  Google Scholar 

  85. W.H. Dickhoff, D.V. Neck, Many-Body Theory Exposed! World Scientific (2005)

  86. H. Kucharek, P. Ring, Relativistic field theory of superfluidity in nuclei. Zeitschrift für Physik A 339(1), 23–35 (1991)

    ADS  Google Scholar 

  87. N. Vinh Mau, In: Theory of Nuclear Structure, Trieste Lectures 1069 (IAEA, Vienna, 1970)

  88. N.V. Mau, A. Bouyssy, Optical potential for low-energy neutrons: Imaginary potential for neutron- 40 Ca elastic scattering. Nucl. Phys. A 257, 189–220 (1976). https://doi.org/10.1016/0375-9474(76)90627-8

    Article  ADS  Google Scholar 

  89. P. Ring, P. Schuck, The Nuclear Many-Body Problem. Springer, (1980)

  90. G.A. Rijsdijk, K. Allaart, W.H. Dickhoff, Hole spectral functions and collective excitations. Nucl. Phys. A 550, 159–178 (1992)

    ADS  Google Scholar 

  91. C. Barbieri, M. Hjorth-Jensen, Quasiparticle and quasihole states of nuclei around ni-56. Phys. Rev. C 79, 064313 (2009). https://doi.org/10.1103/PhysRevC.79.064313

    Article  ADS  Google Scholar 

  92. C. Barbieri, Role of long-range correlations on the quenching of spectroscopic factors. Phys. Rev. Lett. 103, 202502 (2009). https://doi.org/10.1103/PhysRevLett.103.202502

    Article  ADS  Google Scholar 

  93. E. Litvinova, P. Ring, Covariant theory of particle-vibrational coupling and its effect on the single-particle spectrum. Phys. Rev. C 73(4), 044328 (2006)

    ADS  Google Scholar 

  94. P. Schuck, F. Villars, P. Ring, Rpa equations for 2-particle-1-hole states. Nucl. Phys. A 208, 302–308 (1973). https://doi.org/10.1016/0375-9474(73)90377-1

    Article  ADS  Google Scholar 

  95. V. Zelevinsky, A. Volya, Physics of Atomic Nuclei. Wiley, ??? (2017)

  96. G.A. Rijsdijk, W.J.W. Geurts, K. Allaart, W.H. Dickhoff, Hole spectral function and two-particle-one-hole response propagator. Phys. Rev. C 53, 201–213 (1996)

    ADS  Google Scholar 

  97. N. Bogolubov, J. Phys. 11, 23 (1947)

    MathSciNet  Google Scholar 

  98. Y. Zhang, A. Bjelčić, T. Nikšić, E. Litvinova, P. Ring, P. Schuck, Many-body approach to superfluid nuclei in axial geometry. Phys. Rev. C 105(4), 044326 (2022)

    ADS  Google Scholar 

  99. P. Avogadro, T. Nakatsukasa, Finite amplitude method for the quasi-particle-random-phase approximation. Phys. Rev. C 84, 014314 (2011). https://doi.org/10.1103/PhysRevC.84.014314

    Article  ADS  Google Scholar 

  100. P. Schuck, M. Tohyama, Progress in many-body theory with the equation of motion method: Time-dependent density matrix meets self-consistent RPA and applications to solvable models. Phys. Rev. B 93(16), 165117 (2016)

    ADS  Google Scholar 

  101. L.A. Malov, F.M. Meliev, V.G. Soloviev, Zeitschrift für Physik A 320, 521 (1985)

    ADS  Google Scholar 

  102. Y.F. Niu, G. Colo, E. Vigezzi, C.L. Bai, H. Sagawa, Quasiparticle random-phase approximation with quasiparticle-vibration coupling: Application to the gamow-teller response of the superfluid nucleus 120-sn. Phys. Rev. C 94(6), 064328 (2016). https://doi.org/10.1103/PhysRevC.94.064328

    Article  ADS  Google Scholar 

  103. N. Lyutorovich, V. Tselyaev, J. Speth, P.G. Reinhard, Excitation spectra of exotic nuclei in a self-consistent phonon-coupling model. Phys. Rev. C 98(5), 054304 (2018). https://doi.org/10.1103/PhysRevC.98.054304. ([nucl-th])

    Article  ADS  Google Scholar 

  104. Y. Niu, Z. Niu, G. Colò, E. Vigezzi, Interplay of quasiparticle-vibration coupling and pairing correlations on \(\beta \)-decay half-lives. Phys. Lett. B 780, 325–331 (2018)

    ADS  Google Scholar 

  105. E. Litvinova, H. Loens, K. Langanke, G. Martinez-Pinedo, T. Rauscher, P. Ring, F.-K. Thielemann, V. Tselyaev, Low-lying dipole response in the relativistic quasiparticle time blocking approximation and its influence on neutron capture cross sections. Nucl. Phys. A 823(1), 26–37 (2009)

    ADS  Google Scholar 

  106. J. Endres, E. Litvinova, D. Savran, P.A. Butler, M.N. Harakeh, S. Harissopulos, R.-D. Herzberg, R. Krücken, A. Lagoyannis, N. Pietralla, V.Y. Ponomarev, L. Popescu, P. Ring, M. Scheck, K. Sonnabend, V.I. Stoica, H.J. Wörtche, A. Zilges, Isospin character of the pygmy dipole resonance in \(^{124}{\rm Sn}\). Phys. Rev. Lett. 105, 212503 (2010). https://doi.org/10.1103/PhysRevLett.105.212503

    Article  ADS  Google Scholar 

  107. R. Massarczyk, R. Schwengner, F. Dönau, E. Litvinova, G. Rusev, R. Beyer, R. Hannaske, A. Junghans, M. Kempe, J.H. Kelley et al., Electromagnetic dipole strength of 136 ba below the neutron separation energy. Phys. Rev. C 86(1), 014319 (2012)

    ADS  Google Scholar 

  108. E. Lanza, A. Vitturi, E. Litvinova, D. Savran, Dipole excitations via isoscalar probes: The splitting of the pygmy dipole resonance in 124 sn. Phys. Rev. C 89(4), 041601 (2014)

    ADS  Google Scholar 

  109. I. Poltoratska, R. Fearick, A. Krumbholz, E. Litvinova, H. Matsubara, P. Neumann-Cosel, V.Y. Ponomarev, A. Richter, A. Tamii, Fine structure of the isovector giant dipole resonance in pb 208: Characteristic scales and level densities. Phys. Rev. C 89(5), 054322 (2014)

    ADS  Google Scholar 

  110. D. Negi, M. Wiedeking, E.G. Lanza, E. Litvinova, A. Vitturi, R.A. Bark, L.A. Bernstein, D.L. Bleuel, D.S. Bvumbi, T.D. Bucher, B.H. Daub, T.S. Dinoko, N. Erasmus, J.L. Easton, A. Görgen, M. Guttormsen, P. Jones, B.V. Kheswa, N. Khumalo8, A.C. Larsen, E.A. Lawrie, J.J. Lawrie, S.N.T. Majola, L.P. Masiteng, M.R. Nchodu, J. Ndayishimye, R.T. Newman, S.P. Noncolela, J.N. Orce, P. Papka, T. Renstrøm, D.G. Roux, O. Shirinda, S. Siem, P.S. Sithole, P.C. Uwitonze, Nature of low-lying electric dipole resonance states in 74-ge. Physical Review C 94, 024332 (2016)

  111. I.A. Egorova, E. Litvinova, Electric dipole response of neutron-rich calcium isotopes in relativistic quasiparticle time blocking approximation. Phys. Rev. C 94, 034322 (2016)

    ADS  Google Scholar 

  112. J. Carter et al., Damping of the isovector giant dipole resonance in 40,48ca. Phys. Lett. B 833, 137374 (2022). https://doi.org/10.1016/j.physletb.2022.137374

    Article  Google Scholar 

  113. M. Scott et al., Observation of the Isovector Giant Monopole Resonance via the \(^{28}\)Si(\(^{10}\)Be, \(^{10}\)B) Reaction at 100A/MeV. Phys. Rev. Lett. 118(17), 172501 (2017). https://doi.org/10.1103/PhysRevLett.118.172501

    Article  ADS  Google Scholar 

  114. C. Robin, E. Litvinova, Coupling charge-exchange vibrations to nucleons in a relativistic framework: effect on Gamow-Teller transitions and beta-decay half-lives. Phys. Rev. C 98, 051301 (2018)

    ADS  Google Scholar 

  115. E. Litvinova, H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)

    ADS  Google Scholar 

  116. E. Litvinova, H. Wibowo, European Physical Journal A 55, 223 (2019)

    ADS  Google Scholar 

  117. E. Litvinova, C. Robin, H. Wibowo, Phys. Lett. B 800, 135134 (2020)

    Google Scholar 

  118. E. Litvinova, C. Robin, Impact of complex many-body correlations on electron capture in thermally excited nuclei around 78-ni. Phys. Rev. C 103(2), 024326 (2021). https://doi.org/10.1103/PhysRevC.103.024326

    Article  ADS  Google Scholar 

  119. E. Litvinova, Nuclear response theory with multiphonon coupling in a covariant framework. Phys. Rev. C 91(3), 034332 (2015)

    ADS  Google Scholar 

  120. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  121. G.A. Lalazissis, S. Karatzikos, R. Fossion, D.P. Arteaga, A.V. Afanasjev, P. Ring, The effective force nl3 revisited. Phys. Lett. B 671(1), 36–41 (2009)

    ADS  Google Scholar 

  122. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Relativistic hartree-bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Phys. Rep. 409(3), 101–259 (2005)

    ADS  Google Scholar 

  123. A. Taninah, A.V. Afanasjev, Anchor-based optimization of energy density functionals. Phys. Rev. C 107(4), 041301 (2023). https://doi.org/10.1103/PhysRevC.107.L041301. arXiv:2302.10979 [nucl-th]

    Article  ADS  Google Scholar 

  124. D.M. Rossi, P. Adrich, F. Aksouh, H. Alvarez-Pol, T. Aumann, J. Benlliure, M. Böhmer, K. Boretzky, E. Casarejos, M. Chartier, A. Chatillon, D. Cortina-Gil, U. Datta Pramanik, H. Emling, O. Ershova, B. Fernandez-Dominguez, H. Geissel, M. Gorska, M. Heil, H.T. Johansson, A. Junghans, A. Kelic-Heil, O. Kiselev, A. Klimkiewicz, J.V. Kratz, R. Krücken, N. Kurz, M. Labiche, T. Le Bleis, R. Lemmon, Y.A. Litvinov, K. Mahata, P. Maierbeck, A. Movsesyan, T. Nilsson, C. Nociforo, R. Palit, S. Paschalis, R. Plag, R. Reifarth, D. Savran, H. Scheit, H. Simon, K. Sümmerer, A. Wagner, W. ś, H. Weick, M. Winkler, Measurement of the dipole polarizability of the unstable neutron-rich nucleus \(^{68}\rm Ni\). Phys. Rev. Lett. 111, 242503 (2013). https://doi.org/10.1103/PhysRevLett.111.242503

    Article  ADS  Google Scholar 

  125. O. Wieland et al., Low-lying dipole response in the unstable Ni70 nucleus. Phys. Rev. C 98(6), 064313 (2018). https://doi.org/10.1103/PhysRevC.98.064313

    Article  ADS  Google Scholar 

  126. N. Paar, P. Ring, T. Nikšić, D. Vretenar, Quasiparticle random phase approximation based on the relativistic hartree-bogoliubov model. Phys. Rev. C 67(3), 034312 (2003)

    ADS  Google Scholar 

  127. B.D. Serot, J.D. Walecka, The relativistic nuclear many body problem. Advances in Nuclear Physics 16(1), (1986)

  128. P. Ring, Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193–263 (1996)

    ADS  Google Scholar 

  129. J. Boguta, A. Bodmer, Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292(3), 413–428 (1977)

    MathSciNet  ADS  Google Scholar 

  130. E. Litvinova, Pion-nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure. Phys. Lett. B 755, 138–144 (2016). https://doi.org/10.1016/j.physletb.2016.01.052

    Article  ADS  Google Scholar 

  131. O. Wieland et al., Search for the Pygmy Dipole Resonance in Ni-68 at Me-600V/nucleon. Phys. Rev. Lett. 102, 092502 (2009). https://doi.org/10.1103/PhysRevLett.102.092502

    Article  ADS  Google Scholar 

  132. P. Papakonstantinou, H. Hergert, R. Roth, Isoscalar and neutron modes in the e1 spectra of ni isotopes and the relevance of shell effects and the continuum. Phys. Rev. C 92(3), 034311 (2015). https://doi.org/10.1103/PhysRevC.92.034311

    Article  ADS  Google Scholar 

  133. X. Roca-Maza, X. Viñas, M. Centelles, B.K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, D. Vretenar, Neutron skin thickness from the measured electric dipole polarizability in \(^{68}\text{ Ni }\), \(^{120}\text{ Sn }\), and \(^{208}\text{ Pb }\). Phys. Rev. C 92, 064304 (2015). https://doi.org/10.1103/PhysRevC.92.064304

    Article  ADS  Google Scholar 

  134. D. Savran, T. Aumann, A. Zilges, Experimental studies of the pygmy dipole resonance. Prog. Part. Nucl. Phys. 70, 210–245 (2013). https://doi.org/10.1016/j.ppnp.2013.02.003

    Article  ADS  Google Scholar 

  135. E.G. Lanza, L. Pellegri, A. Vitturi, M.V. Andrés, Theoretical studies of pygmy resonances. Prog. Part. Nucl. Phys. 129, 104006 (2023). https://doi.org/10.1016/j.ppnp.2022.104006

    Article  Google Scholar 

  136. E. Litvinova, P. Ring, D. Vretenar, Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances. Phys. Lett. B 647, 111–117 (2007). https://doi.org/10.1016/j.physletb.2007.01.056. ([nucl-th])

    Article  ADS  Google Scholar 

  137. E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Relativistic quasiparticle time blocking approximation. ii. pygmy dipole resonance in neutron-rich nuclei. Phys. Rev. C 79, 054312 (2009). https://doi.org/10.1103/PhysRevC.79.054312

    Article  ADS  Google Scholar 

  138. E. Litvinova, N. Belov, Low-energy limit of the radiative dipole strength in nuclei. Phys. Rev. C 88(3), 031302 (2013)

    ADS  Google Scholar 

  139. B. Özel-Tashenov, J. Enders, H. Lenske, A. Krumbholz, E. Litvinova, P. Neumann-Cosel, I. Poltoratska, A. Richter, G. Rusev, D. Savran, N. Tsoneva, Low-energy dipole strength in sn 112, 120. Phys. Rev. C 90(2), 024304 (2014)

  140. N. Tsoneva, H. Lenske, Pygmy quadrupole resonance in skin nuclei. Phys. Lett. B 695(1), 174–180 (2011). https://doi.org/10.1016/j.physletb.2010.11.002

    Article  ADS  Google Scholar 

  141. M. Spieker, N. Tsoneva, V. Derya, J. Endres, D. Savran, M.N. Harakeh, S. Harissopulos, R.-D. Herzberg, A. Lagoyannis, H. Lenske, N. Pietralla, L. Popescu, M. Scheck, F. Schlüter, K. Sonnabend, V.I. Stoica, H.J. Wörtche, A. Zilges, The pygmy quadrupole resonance and neutron-skin modes in 124sn. Phys. Lett. B 752, 102–107 (2016). https://doi.org/10.1016/j.physletb.2015.11.004

    Article  ADS  Google Scholar 

  142. V. Tselyaev, N. Lyutorovich, J. Speth, P.-G. Reinhard, \(M1\) resonance in \(^{208}\)Pb within the self-consistent phonon-coupling model. Phys. Rev. C 102(6), 064319 (2020). https://doi.org/10.1103/PhysRevC.102.064319. arXiv:2010.03149 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Illuminating discussions with Mark Spieker, Nadezhda Tsoneva, Enrico Vigezzi, and Horst Lenske are gratefully acknowledged. This work was supported by the GANIL Visitor Program, US-NSF Grant PHY-2209376, and US-NSF Career Grant PHY-1654379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Litvinova.

Additional information

Communicated by David Blaschke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinova, E. On the dynamical kernels of fermionic equations of motion in strongly-correlated media. Eur. Phys. J. A 59, 291 (2023). https://doi.org/10.1140/epja/s10050-023-01198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01198-y

Navigation