Skip to main content
Log in

Quadrupole–octupole shape and dynamics of \(^{222}\)Ra

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

A Publisher Erratum to this article was published on 08 November 2023

This article has been updated

Abstract

The collective states of \(^{222}\)Ra are used as input for a phenomenological model based on an axial quadrupole–octupole Bohr Hamiltonian, to determine its shape and the nature of the excited band. The later is interpreted by two competing excitation mechanisms for which distinguishing spectral signatures are forwarded. The ground state is found to have a well stabilized equilibrium quadrupole–octupole deformation. Its corresponding shape is correlated with a molecular state encountered along the disintegration path predicted within a microscopic–macroscopic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sets generated during the current study are available from the corresponding author on reasonable request.]

Change history

References

  1. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)

    ADS  Google Scholar 

  2. P.A. Butler, J. Phys. G Nucl. Part. Phys. 43, 073002 (2016)

    ADS  Google Scholar 

  3. P.A. Butler et al., Nat. Commun. 10, 2473 (2019)

    ADS  Google Scholar 

  4. P.G. Bizzeti, A.M. Bizzeti-Sona, Phys. Rev. C 70, 064319 (2004)

    ADS  Google Scholar 

  5. P.G. Bizzeti, A.M. Bizzeti-Sona, Eur. Phys. J. A 20, 179 (2004)

    ADS  Google Scholar 

  6. P.G. Bizzeti, A.M. Bizzeti-Sona, Phys. Rev. C 77, 024320 (2008)

    ADS  Google Scholar 

  7. D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P. Yotov, Phys. Rev. C 71, 064309 (2005)

    ADS  Google Scholar 

  8. D. Lenis, D. Bonatsos, Phys. Lett. B 633, 474 (2006)

    ADS  Google Scholar 

  9. D. Bonatsos, A. Martinou, N. Minkov, S. Karampagia, D. Petrellis, Phys. Rev. C 91, 054315 (2015)

    ADS  Google Scholar 

  10. N. Minkov, S. Drenska, M. Strecker, W. Scheid, H. Lenske, Phys. Rev. C 85, 034306 (2012)

    ADS  Google Scholar 

  11. M.S. Nadirbekov, G.A. Yuldasheva, N. Minkov, W. Scheid, Int. J. Mod. Phys. E 21, 1250044 (2012)

    ADS  Google Scholar 

  12. M.S. Nadirbekov, G.A. Yuldasheva, VYu. Denisov, Phys. At. Nucl. 78, 215 (2015)

    Google Scholar 

  13. N.V. Zamfir, D. Kusnezov, Phys. Rev. C 63, 054306 (2001)

    ADS  Google Scholar 

  14. M. Spieker, D. Bucurescu, J. Endres, T. Faestermann, R. Hertenberger, S. Pascu, S. Skalacki, S. Weber, H.-F. Wirth, N.V. Zamfir, A. Zilges, Phys. Rev. C 88, 041303(R) (2013)

    ADS  Google Scholar 

  15. K. Nomura, D. Vretenar, T. Nikšić, B.-N. Lu, Phys. Rev. C 89, 024312 (2014)

    ADS  Google Scholar 

  16. K. Nomura, R. Rodríguez-Guzmán, Y.M. Humadi, L.M. Robledo, J.E. García-Ramos, Phys. Rev. C 102, 064326 (2020)

    ADS  Google Scholar 

  17. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, J.E. García-Ramos, Phys. Rev. C 103, 044311 (2021)

    ADS  Google Scholar 

  18. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, J.E. García-Ramos, N.C. Hernández, Phys. Rev. C 104, 044324 (2021)

    ADS  Google Scholar 

  19. L.M. Robledo, J.L. Egido, B. Nerlo-Pomorska, K. Pomorski, Phys. Lett. B 201, 409 (1988)

    ADS  Google Scholar 

  20. L.M. Robledo, M. Baldo, P. Schuck, X. Viñas, Phys. Rev. C 77, 051301(R) (2008)

    ADS  Google Scholar 

  21. S.Y. Xia, H. Tao, Y. Lu, Z.P. Li, T. Nikšić, D. Vretenar, Phys. Rev. C 96, 054303 (2017)

    ADS  Google Scholar 

  22. P. Bonche, P.-H. Heenen, H. Flocard, D. Vautherin, Phys. Lett. B 175, 387 (1986)

    ADS  Google Scholar 

  23. A. Tsvetkov, J. Kvasil, R.G. Nazmitdinov, J. Phys. G Nucl. Part. Phys. 28, 2187 (2002)

    ADS  Google Scholar 

  24. S.E. Agbemava, A.V. Afanasjev, P. Ring, Phys. Rev. C 93, 044304 (2016)

    ADS  Google Scholar 

  25. Y. Cao, S.E. Agbemava, A.V. Afanasjev, W. Nazarewicz, E. Olsen, Phys. Rev. C 102, 024311 (2020)

    ADS  Google Scholar 

  26. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 2 (Benjamin, Reading, 1975)

    MATH  Google Scholar 

  27. https://www.nndc.bnl.gov/ensdf

  28. P.A. Butler et al., Phys. Rev. Lett. 124, 042503 (2020)

    ADS  Google Scholar 

  29. W. Donner, W. Greiner, Z. Phys. 197, 440 (1966)

    ADS  Google Scholar 

  30. A.. Ya.. Dzyublik, VYu. Denisov, Yad. Fiz. 56, 30 (1993)

    Google Scholar 

  31. VYu. Denisov, A.. Ya.. Dzyublik, Nucl. Phys. A 589, 17 (1995)

    ADS  Google Scholar 

  32. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)

    ADS  Google Scholar 

  33. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007)

    ADS  Google Scholar 

  34. R. Budaca, P. Buganu, A.I. Budaca, Phys. Rev. C 106, 014311 (2022)

    ADS  Google Scholar 

  35. H.J. Daley, F. Iachello, Ann. Phys. (NY) 167, 73 (1986)

    ADS  Google Scholar 

  36. J. Engel, F. Iachello, Nucl. Phys. A 472, 61 (1987)

    ADS  Google Scholar 

  37. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 57, R2095 (1998)

    ADS  Google Scholar 

  38. T.M. Shneidman, G.G. Adamian, N.V. Antonenko, R.V. Jolos, W. Scheid, Phys. Rev. C 67, 014313 (2003)

    ADS  Google Scholar 

  39. M. Mirea, R. Budaca, A. Sandulescu, Ann. Phys. (NY) 380, 154 (2017)

  40. M. Mirea, A. Sandulescu, D.S. Delion, Nucl. Phys. A 870–871, 23 (2011)

    ADS  Google Scholar 

  41. M. Mirea, Phys. Rev. C 78, 044618 (2008)

  42. K.T.R. Davies, J.R. Nix, Phys. Rev. C 14, 1977 (1976)

    ADS  Google Scholar 

  43. D.N. Poenaru, M. Ivascu, D. Mazilu, Comput. Phys. Commun. 19, 205 (1980)

    ADS  Google Scholar 

  44. M. Mirea, O. Bajeat, F. Clapier, F. Ibrahim, A.C. Mueller, N. Pauwels, J. Proust, Eur. Phys. J. A 11, 59 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Ministry of Research, Innovation and Digitalization, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2021-0109, within PNCDI III, and PN-23-21-01-01/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Budaca.

Additional information

Communicated by Dario Vretenar.

The first affiliation details for all authors were incorrectly given as ’ “Horia Hulubei” National Institute for R & D in Physics, Str. Reactorului 30, POB-MG6, 077125 Bucharest-Mǎgurele, Romania’ but should have been ’“Horia Hulubei” National Institute for R & D in Physics and Nuclear Engineering, Str. Reactorului 30, POB-MG6, 077125 Bucharest-Mǎgurele, Romania’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaca, R., Buganu, P. & Budaca, A.I. Quadrupole–octupole shape and dynamics of \(^{222}\)Ra. Eur. Phys. J. A 59, 242 (2023). https://doi.org/10.1140/epja/s10050-023-01163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01163-9

Navigation