Skip to main content
Log in

High-energy betatron source driven by a 4-PW laser with applications to non-destructive imaging

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Petawatt-class lasers can produce multi-GeV electron beams through laser wakefield electron acceleration. As a by-product, the accelerated electron beams can generate synchrotron-like radiation known as betatron radiation. In the present work, we measure the properties of the radiation produced from 2 GeV, 215 pC electron beams, which shows a broad radiation spectrum with a critical energy of 515 keV, extending up to MeV photon energies and 10 mrad divergence. Due to its high energy and flux, such radiation is an ideal candidate for \(\gamma \)-ray radiography of dense objects. We employed a compact betatron radiation setup operated at relatively high-repetition rates (0.1 Hz) and used it to scan cm-sized objects: a DRAM circuit, BNC and SMA connectors, a padlock and a gas jet nozzle. GEANT4 simulations were carried out to reproduce the radiograph of the gas jet. The setup and the radiation source can reveal the interior structure of the objects at the sub-mm level, proving that it can further be applied to diagnose cracks or holes in various components. The radiation source presented here is a valuable tool for non-destructive inspection and for applications in high-energy-density physics such as nuclear fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has associated data in a private repository. The data is not publicly available due privacy concerns.]

References

  1. C. Danson, D. Hillier, N. Hopps, D. Neely, Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, 3 (2015). https://doi.org/10.1017/hpl.2014.52

    Article  Google Scholar 

  2. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009). https://doi.org/10.1103/RevModPhys.81.1229

    Article  ADS  Google Scholar 

  3. M.C. Downer, R. Zgadzaj, A. Debus, U. Schramm, M.C. Kaluza, Diagnostics for plasma-based electron accelerators. Rev. Mod. Phys. 90, 035002 (2018). https://doi.org/10.1103/RevModPhys.90.035002

    Article  ADS  MathSciNet  Google Scholar 

  4. A.J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T.C.H. de Raadt, S. Steinke, J.H. Bin, S.S. Bulanov, J. van Tilborg, C.G.R. Geddes, C.B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.P. Leemans, Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019). https://doi.org/10.1103/PhysRevLett.122.084801

    Article  ADS  Google Scholar 

  5. J.L. Shaw, M.A. Romo-Gonzalez, N. Lemos, P.M. King, G. Bruhaug, K.G. Miller, C. Dorrer, B. Kruschwitz, L. Waxer, G.J. Williams, M.V. Ambat, M.M. McKie, M.D. Sinclair, W.B. Mori, C. Joshi, H. Chen, J.P. Palastro, F. Albert, D.H. Froula, Microcoulomb (0.7 \(\pm \frac{0.4}{0.2} \mu \)C) laser plasma accelerator on OMEGA EP. Sci. Rep. 11(1), 7498 (2021). https://doi.org/10.1038/s41598-021-86523-5

  6. L.T. Ke, K. Feng, W.T. Wang, Z.Y. Qin, C.H. Yu, Y. Wu, Y. Chen, R. Qi, Z.J. Zhang, Y. Xu, X.J. Yang, Y.X. Leng, J.S. Liu, R.X. Li, Z.Z. Xu, Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Phys. Rev. Lett. 126, 214801 (2021). https://doi.org/10.1103/PhysRevLett.126.214801

    Article  ADS  Google Scholar 

  7. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, J. Faure, Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Phot. 11(5), 293 (2017). https://doi.org/10.1038/nphoton.2017.46

    Article  Google Scholar 

  8. F. Salehi, A.J. Goers, G.A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K.Y. Kim, H.M. Milchberg, MeV electron acceleration at 1 kHz with \(\ll 10\) mJ laser pulses. Opt. Lett. 42(2), 215 (2017). https://doi.org/10.1364/OL.42.000215

    Article  ADS  Google Scholar 

  9. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fus. 58(10), 103001 (2016). https://doi.org/10.1088/0741-3335/58/10/103001

    Article  ADS  Google Scholar 

  10. W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, Z. Xu, Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595(7868), 516 (2021). https://doi.org/10.1038/s41586-021-03678-x

    Article  ADS  Google Scholar 

  11. S. Chen, N.D. Powers, I. Ghebregziabher, C.M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, D.P. Umstadter, MeV-Energy X-Rays from inverse compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett. 110, 155003 (2013). https://doi.org/10.1103/PhysRevLett.110.155003

    Article  ADS  Google Scholar 

  12. G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, Z. Najmudin, D. Symes, A.G.R. Thomas, M. Yeung, Z. Zhao, M. Zepf, Ultrahigh brilliance multi-MeV \(\gamma \)-Ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801

    Article  ADS  Google Scholar 

  13. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, D. Hulin, Production of a keV X-Ray beam from synchrotron radiation in relativistic laser-plasma Interaction. Phys. Rev. Lett. 93, 135005 (2004). https://doi.org/10.1103/PhysRevLett.93.135005

    Article  ADS  Google Scholar 

  14. E. Esarey, B.A. Shadwick, P. Catravas, W.P. Leemans, Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505 (2002). https://doi.org/10.1103/PhysRevE.65.056505

    Article  ADS  Google Scholar 

  15. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1 (2013). https://doi.org/10.1103/RevModPhys.85.1

    Article  ADS  Google Scholar 

  16. A.E. Hussein, N. Senabulya, Y. Ma, M.J.V. Streeter, B. Kettle, S.J.D. Dann, F. Albert, N. Bourgeois, S. Cipiccia, J.M. Cole, O. Finlay, E. Gerstmayr, I.G. González, A. Higginbotham, D.A. Jaroszynski, K. Falk, K. Krushelnick, N. Lemos, N.C. Lopes, C. Lumsdon, O. Lundh, S.P.D. Mangles, Z. Najmudin, P.P. Rajeev, C.M. Schlepütz, M. Shahzad, M. Smid, R. Spesyvtsev, D.R. Symes, G. Vieux, L. Willingale, J.C. Wood, A.J. Shahani, A.G.R. Thomas, Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Sci. Rep. 9(1), 3249 (2019). https://doi.org/10.1038/s41598-019-39845-4

    Article  ADS  Google Scholar 

  17. S. Fourmaux, S. Corde, K.T. Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, J.C. Kieffer, Single shot phase contrast imaging using laser-produced Betatron x-ray beams. Opt. Lett. 36(13), 2426 (2011). https://doi.org/10.1364/OL.36.002426

    Article  ADS  Google Scholar 

  18. S. Kneip, C. McGuffey, F. Dollar, M.S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, Z. Najmudin, C.A.J. Palmer, J. Schreiber, W. Schumaker, A.G.R. Thomas, V. Yanovsky, X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99(9), 093701 (2011). https://doi.org/10.1063/1.3627216

    Article  ADS  Google Scholar 

  19. J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer, S. Karsch, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Comm. 6(1), 7568 (2015). https://doi.org/10.1038/ncomms8568

    Article  ADS  Google Scholar 

  20. J.M. Cole, J.C. Wood, N.C. Lopes, K. Poder, R.L. Abel, S. Alatabi, J.S.J. Bryant, A. Jin, S. Kneip, K. Mecseki, D.R. Symes, S.P.D. Mangles, Z. Najmudin, Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 5(1), 13244 (2015). https://doi.org/10.1038/srep13244

    Article  ADS  Google Scholar 

  21. J.C. Wood, D.J. Chapman, K. Poder, N.C. Lopes, M.E. Rutherford, T.G. White, F. Albert, K.T. Behm, N. Booth, J.S.J. Bryant, P.S. Foster, S. Glenzer, E. Hill, K. Krushelnick, Z. Najmudin, B.B. Pollock, S. Rose, W. Schumaker, R.H.H. Scott, M. Sherlock, A.G.R. Thomas, Z. Zhao, D.E. Eakins, S.P.D. Mangles, Ultrafast imaging of laser driven shock waves using Betatron X-rays from a laser wakefield accelerator. Scie. Rep. 8(1), 11010 (2018). https://doi.org/10.1038/s41598-018-29347-0

    Article  ADS  Google Scholar 

  22. F. Albert, N. Lemos, J.L. Shaw, P.M. King, B.B. Pollock, C. Goyon, W. Schumaker, A.M. Saunders, K.A. Marsh, A. Pak, J.E. Ralph, J.L. Martins, L.D. Amorim, R.W. Falcone, S.H. Glenzer, J.D. Moody, C. Joshi, Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities. Nucl. Fus. 59(3), 032003 (2018). https://doi.org/10.1088/1741-4326/aad058

    Article  ADS  Google Scholar 

  23. J.-N. Gruse, M.J.V. Streeter, C. Thornton, C.D. Armstrong, C.D. Baird, N. Bourgeois, S. Cipiccia, O.J. Finlay, C.D. Gregory, Y. Katzir, N.C. Lopes, S.P.D. Mangles, Z. Najmudin, D. Neely, L.R. Pickard, K.D. Potter, P.P. Rajeev, D.R. Rusby, C.I.D. Underwood, J.M. Warnett, M.A. Williams, J.C. Wood, C.D. Murphy, C.M. Brenner, D.R. Symes, Application of compact laser-driven accelerator X-ray sources for industrial imaging. Nucl. Instruments Methods Phys. Res. Sect. A 983, 164369 (2020). https://doi.org/10.1016/j.nima.2020.164369

    Article  Google Scholar 

  24. Y. Glinec, J. Faure, L.L. Dain, S. Darbon, T. Hosokai, J.J. Santos, E. Lefebvre, J.P. Rousseau, F. Burgy, B. Mercier, V. Malka, High-resolution \(\gamma \)-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett. 94, 025003 (2005). https://doi.org/10.1103/PhysRevLett.94.025003

    Article  ADS  Google Scholar 

  25. F. Albert, M.E. Couprie, A. Debus, M.C. Downer, J. Faure, A. Flacco, L.A. Gizzi, T. Grismayer, A. Huebl, C. Joshi, M. Labat, W.P. Leemans, A.R. Maier, S.P.D. Mangles, P. Mason, F. Mathieu, P. Muggli, M. Nishiuchi, J. Osterhoff, P.P. Rajeev, U. Schramm, J. Schreiber, A.G.R. Thomas, J.-L. Vay, M. Vranic, K. Zeil, 2020 roadmap on plasma accelerators. New J. Phys. 23(3), 031101 (2021). https://doi.org/10.1088/1367-2630/abcc62

    Article  ADS  Google Scholar 

  26. J. H. Sung, H.W. Lee, J.Y. Yoo, J.W., Yoon, C.W. Lee, J.M. Yang, Y.J. Son, Y.H. Jang, S.K. Lee, C.H. Nam. 4.2 PW 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 42( 11), 2058 ( 2017). https://doi.org/10.1364/OL.42.002058

  27. C.E. Clayton, J.E. Ralph, F. Albert, R.A. Fonseca, S.H. Glenzer, C. Joshi, W. Lu, K.A. Marsh, S.F. Martins, W.B. Mori, A. Pak, F.S. Tsung, B.B. Pollock, J.S. Ross, L.O. Silva, D.H. Froula, Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010). https://doi.org/10.1103/PhysRevLett.105.105003

    Article  ADS  Google Scholar 

  28. M. Mirzaie, S. Li, M. Zeng, N.A.M. Hafz, M. Chen, G.Y. Li, Q.J. Zhu, H. Liao, T. Sokollik, F. Liu, Y.Y. Ma, L.M. Chen, Z.M. Sheng, J. Zhang, Demonstration of self-truncated ionization injection for GeV electron beams. Sci. Rep. 5(1), 14659 (2015). https://doi.org/10.1038/srep14659

    Article  ADS  Google Scholar 

  29. H.T. Kim, V.B. Pathak, K. Hong Pae, A. Lifschitz, F. Sylla, J.H. Shin, C. Hojbota, S.K. Lee, J.H. Sung, H.W. Lee, E. Guillaume, C. Thaury, K. Nakajima, J. Vieira, L.O. Silva, V. Malka, C.H. Nam, Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7(1), 10203 (2017). https://doi.org/10.1038/s41598-017-09267-1

    Article  ADS  Google Scholar 

  30. C.I. Hojbota, H.T. Kim, J.H. Shin, C. Aniculaesei, B.S. Rao, C.H. Nam, Accurate single-shot measurement technique for the spectral distribution of GeV electron beams from a laser wakefield accelerator. AIP Advances 9(8), 085229 (2019). https://doi.org/10.1063/1.5117311

    Article  ADS  Google Scholar 

  31. B.B. Pollock, J.S. Ross, G.R. Tynan, L. Divol, S.H. Glenzer, V. Leurent, J.P. Palastro, J.E. Ralph, D.H. Froula, C.E. Clayton, K.A. Marsh, A.E. Pak, T.L. Wang, C. Joshi, Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration. Technical report, United States (Apr 2009). LLNL-PROC–412609. https://e-reports-ext.llnl.gov/pdf/372646.pdf

  32. K.A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Ikeda, Y. Honda, S. Okuda, Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76(1), 013507 (2005). https://doi.org/10.1063/1.1824371

    Article  ADS  Google Scholar 

  33. J.H. Jeon, K. Nakajima, H.T. Kim, Y.J. Rhee, V.B. Pathak, M.H. Cho, J.H. Shin, B.J. Yoo, S.H. Jo, K.W. Shin, C. Hojbota, L.J. Bae, J. Jung, M.S. Cho, J.H. Sung, S.K. Lee, B.I. Cho, I.W. Choi, C.H. Nam, Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters. Phys. Plasmas 23(7), 073105 (2016). https://doi.org/10.1063/1.4956447

    Article  ADS  Google Scholar 

  34. A. Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, S. Karsch, Quick x-ray microtomography using a laser-driven betatron source. Optica 5(2), 199 (2018). https://doi.org/10.1364/OPTICA.5.000199

    Article  ADS  Google Scholar 

  35. P.M. King, N. Lemos, J.L. Shaw, A.L. Milder, K.A. Marsh, A. Pak, B.M. Hegelich, P. Michel, J. Moody, C. Joshi, F. Albert, X-ray analysis methods for sources from self-modulated laser wakefield acceleration driven by picosecond lasers. Rev. Sci. Instrum. 90(3), 033503 (2019). https://doi.org/10.1063/1.5082965

    Article  ADS  Google Scholar 

  36. J.H. Jeon, K. Nakajima, H.T. Kim, Y.J. Rhee, V.B. Pathak, M.H. Cho, J.H. Shin, B.J. Yoo, C. Hojbota, S.H. Jo, K.W. Shin, J.H. Sung, S.K. Lee, B.I. Cho, I.W. Choi, C.H. Nam, A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation. Rev. Sci. Instrum. 86(12), 123116 (2015). https://doi.org/10.1063/1.4939014

    Article  ADS  Google Scholar 

  37. A. Hannasch, A. Laso Garcia, M. LaBerge, R. Zgadzaj, A. Köhler, J.P. Couperus Cabadağ, O. Zarini, T. Kurz, A. Ferrari, M. Molodtsova, L. Naumann, T.E. Cowan, U. Schramm, A. Irman, M.C. Downer, Compact spectroscopy of keV to MeV X-rays from a laser wakefield accelerator. Sci. Rep. 11(1), 14368 (2021). https://doi.org/10.1038/s41598-021-93689-5

    Article  ADS  Google Scholar 

  38. F. Albert, B.B. Pollock, J.L. Shaw, K.A. Marsh, J.E. Ralph, Y.-H. Chen, D. Alessi, A. Pak, C.E. Clayton, S.H. Glenzer, C. Joshi, Angular Dependence of Betatron X-Ray Spectra from a Laser-Wakefield Accelerator’’. Phys. Rev. Lett. 111, 235004 (2013). https://doi.org/10.1103/PhysRevLett.111.235004

    Article  ADS  Google Scholar 

  39. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506(3), 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  40. P.M. King, D. Rusby, A. Hannasch, N. Lemos, G. Tiwari, A. Pak, S. Kerr, G. Cochran, I. Pagano, G.J. Williams, S.F. Khan, M. Aufderheide, A. Kemp, S. Wilks, A. Macphee, F. Albert, B.M. Hegelich, M. Downer, M. Manuel, Z. Gavin, A. Haid, A. Mackinnon, Enhancement of high energy X-ray radiography using compound parabolic concentrator targets. High Energy Density Phys. 42, 100978 (2022). https://doi.org/10.1016/j.hedp.2022.100978

    Article  Google Scholar 

  41. U. Guin, K. Huang, D. DiMase, J.M. Carulli, M. Tehranipoor, Y. Makris, Counterfeit integrated circuits: a rising threat in the global semiconductor supply chain. Proc. IEEE 102(8), 1207 (2014). https://doi.org/10.1109/JPROC.2014.2332291

    Article  Google Scholar 

  42. Datasheet, Hamamatsu 90 keV microfocus x-ray source L9421-02. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/L9421-02_TXPR1011E.pdf (Acces date: 2022.11.14)

  43. K. Ahi, N. Asadizanjani, S. Shahbazmohamadi, M. Tehranipoor, M. Anwar. Terahertz characterization of electronic components and comparison of terahertz imaging with x-ray imaging techniques. In: M.F. Anwar, T.W. Crowe, T. Manzur (eds.) Terahertz Physics, Devices, and Systems IX: Advanced Applications in Industry and Defense, vol. 9483, p. 94830. SPIE, ( 2015). International Society for Optics and Photonics. https://doi.org/10.1117/12.2183128

  44. L. Soto, C. Pavez, J. Moreno, M. Cárdenas, A. Tarifeño, P. Silva, M. Zambra, L. Huerta, C. Tenreiro, J.L. Giordano, M. Lagos, C. Retamal, R. Escobar, J. Ramos, L. Altamirano. Dense transient pinches and pulsed power technology: research and applications using medium and small devices. Phys. Scripta 2008( T131), 014031 ( 2008). https://doi.org/10.1088/0031-8949/2008/T131/014031

  45. V. Raspa, C. Moreno, L. Sigaut, A. Clausse, Effective hard x-ray spectrum of a tabletop Mather-type plasma focus optimized for flash radiography of metallic objects. J. Appl. Phys. 102(12), 123303 (2007). https://doi.org/10.1063/1.2822449

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the operation of the PW laser and the target area management by the CoReLS technical staff. This work was supported by Institute for Basic Science under IBS-R012-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calin Ioan Hojbota.

Additional information

Communicated by Calin Alexandru Ur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojbota, C.I., Mirzaie, M., Kim, D.Y. et al. High-energy betatron source driven by a 4-PW laser with applications to non-destructive imaging. Eur. Phys. J. A 59, 247 (2023). https://doi.org/10.1140/epja/s10050-023-01159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01159-5

Navigation