Skip to main content
Log in

Shell-model study of \(\beta ^+\)/EC-decay half-lives for \(Z=21\)–30 nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work, we have reported \(\beta ^+\)/EC-decay half-lives for \(Z = 21\)–30 nuclei using large-scale shell-model. A recent study shows that some proton-rich nuclei in this region belong to the island of inversion. We have performed calculations for these nuclei using KB3G effective interaction, while for Ni, Cu, and Zn nuclei we have used JUN45 effective interaction in the \(f_{5/2}pg_{9/2}\) model space. The calculated quenching factors for fp and \(f_{5/2}pg_{9/2}\) space using KB3G and JUN45 effective interactions are also reported. Shell-model results of \(\beta \)-decay half-lives, excitation energies, logft values, and branching fractions are discussed and compared with the available experimental data. We have obtained a reasonable agreement with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have already provided all data in the manuscript (in form of tables and figures).]

References

  1. P. Gysbers et al., Nat. Phys. 15, 428 (2019)

    Google Scholar 

  2. M.L. Bissell et al., Phys. Rev. C 93, 064318 (2016)

    ADS  Google Scholar 

  3. F. Recchia et al., Phys. Scr. T150, 014034 (2012)

    ADS  Google Scholar 

  4. V. Kumar, P.C. Srivastava, H. Li, J. Phys. G Nucl. Part. Phys. 43, 105104 (2016)

    ADS  Google Scholar 

  5. J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010)

    ADS  Google Scholar 

  6. V. Kumar, P.C. Srivastava, Eur. Phys. J. A 52, 181 (2016)

    ADS  Google Scholar 

  7. F. Recchia et al., Phys. Rev. C 85, 064305 (2012)

    ADS  Google Scholar 

  8. V. Kumar, P.C. Srivastava, A. Kumar, Acta Phys. Pol. B 51, 961 (2020)

    ADS  Google Scholar 

  9. S. Naimi et al., Phys. Rev. C 86, 014325 (2012)

    ADS  Google Scholar 

  10. P. Choudhary, A. Kumar, P.C. Srivastava, T. Suzuki, Phys. Rev. C 103, 064325 (2021)

    ADS  Google Scholar 

  11. O.B. Tarasov et al., Phys. Rev. Lett. 102, 142501 (2009)

    ADS  Google Scholar 

  12. C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015)

    ADS  Google Scholar 

  13. T. Otusuka et al., Rev. Mod. Phys. 92, 015002 (2020)

    ADS  Google Scholar 

  14. B.A. Brown, Physics 3, 104 (2010)

    Google Scholar 

  15. J. Williams et al., Phys. Rev. C 100, 014322 (2019)

    ADS  Google Scholar 

  16. S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010)

    ADS  Google Scholar 

  17. K. Sieja, S. Goriely, Eur. Phys. J. A 57, 110 (2021)

    ADS  Google Scholar 

  18. D.E. Alburger, D.H. Wilkinson, Phys. Rev. C 8, 657 (1973)

    ADS  Google Scholar 

  19. W.W. Daehnick, R.D. Rosa, Phys. Rev. C 31, 1499 (1985)

    ADS  Google Scholar 

  20. K.C. Young, Phys. Rev. C 12, 567 (1975)

    ADS  Google Scholar 

  21. P. Sarriguren, Phys. Rev. C 87, 045801 (2013)

    ADS  Google Scholar 

  22. V.T. Koslowsky et al., Nucl. Inst. Meth. Phys. Res. A 401, 289 (1997)

    ADS  Google Scholar 

  23. A.M. Aldridge, K.W. Kemper, H.S. Plendnol, Phys. Lett. 30B, 165 (1969)

    ADS  Google Scholar 

  24. I.N. Borzov et al., Nucl. Phys. A 471, 489 (1987)

    Google Scholar 

  25. E. Hagberg et al., Phys. Rev. Lett. 73, 396 (1994)

  26. L. Faux et al., Nucl. Phys. A 602, 167 (1996)

    ADS  Google Scholar 

  27. C. Dossat et al., Nucl. Phys. A 792, 18 (2007)

    ADS  Google Scholar 

  28. S.E.A. Orrigo et al., Phys. Rev. C 93, 044336 (2016)

    ADS  Google Scholar 

  29. F. Molina et al., Phys. Rev. C 91, 014301 (2015)

    ADS  Google Scholar 

  30. A. Jokinen et al., Eur. Phys. J. A 3, 271 (1998)

    ADS  Google Scholar 

  31. A. Lucan, M. Sahagia, A. Antohe, Appl. Radiat. Isotopes 70, 1876 (2012)

    Google Scholar 

  32. C. Patrignani, Review of particle physics. Chin. Phys. C 40, 100001 (2016)

    ADS  Google Scholar 

  33. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Springer, Berlin, 2007)

    MATH  Google Scholar 

  34. H. Primakoff, S.P. Rosen, Rep. Prog. Phys. 22, 121 (1959)

    ADS  Google Scholar 

  35. ENSDF database, http://www.nndc.bnl.gov/ensdf/

  36. A. Poves et al., Nucl. Phys. A 694, 157 (2001)

    ADS  Google Scholar 

  37. M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009)

    ADS  Google Scholar 

  38. B.A. Brown, W.D.M. Rae, E. McDonald, M. Horoi, NushellX@MSU. Nucl. Data Sheets 120, 115 (2014)

    ADS  Google Scholar 

  39. B.A. Brown, B.H. Wildenthal, Atom. Data Nucl. Data Tables 33, 347 (1985)

    ADS  Google Scholar 

  40. F.T. Porteri, M.S. Freedman, F. Wagner Jr., K.A. Orlandini, Phys. Rev. 146, 774 (1966)

    ADS  Google Scholar 

  41. C. Dossat et al., Nucl. Phys. A 792, 18 (2007)

    ADS  Google Scholar 

  42. L.K. Fifield et al., Nucl. Phys. A 204, 516 (1973)

    ADS  Google Scholar 

  43. J.C. Hardy, H. Schmeing, R.L. Graham, J.Q. Geiger, Phys. Lett. 79B, 341 (1974)

    Google Scholar 

  44. T.W. Burrows, J.W. Olness, D.E. Alburger, Phys. Rev. C 31, 1490 (1985)

    ADS  Google Scholar 

  45. T. Sekin et al., Nucl. Phys. A 467, 93 (1987)

    ADS  Google Scholar 

  46. K.M. Glibert, H.T. Easterday, Nucl. Phys. 86, 279 (1966)

    Google Scholar 

  47. L. Faux et al., Nucl. Phys. A 602, 167 (1969)

    ADS  Google Scholar 

  48. J. Äystö et al., Phys. Lett. 138B, 369 (1984)

    ADS  Google Scholar 

  49. J.N. Black et al., Phys. Rev. C 11, 939 (1975)

    ADS  Google Scholar 

  50. L. Faux et al., Nucl. Phys. A 602, 167 (1969)

    ADS  Google Scholar 

  51. E. Hagberg et al., Nucl. Phys. A 613, 183 (1997)

    ADS  Google Scholar 

  52. S. Kochan et al., Nucl. Phys. A 204, 185 (1973)

    ADS  Google Scholar 

  53. F. Molina, B. Rubio et al., AIP Conf. Proc. 1423, 23 (2012)

    ADS  Google Scholar 

  54. B. Sur et al., Phys. Rev. C 42, 573 (1990)

    ADS  Google Scholar 

  55. D.R. Semon et al., Phys. Rev. C 53, 96 (1996)

    ADS  Google Scholar 

  56. H.W. Jongsma et al., Nucl. Phys. A 179, 554 (1972)

    ADS  Google Scholar 

  57. D.M. van Patter, F. Rauch, B. Seim, Nucl. Phys. A 204, 172 (1973)

    ADS  Google Scholar 

  58. D.M. Van Patter, F. Rauch, Nucl. Phys. A 191, 245 (1972)

    ADS  Google Scholar 

  59. R.A. Meyer et al., Phys. Rev. C 17, 1822 (1978)

    ADS  Google Scholar 

  60. D.M. Van Patter et al., Nucl. Phys. A 146, 427 (1970)

    ADS  Google Scholar 

  61. Y. Arai et al., Nucl. Phys. A 420, 193 (1984)

    ADS  Google Scholar 

  62. E.J. Hoffman, D.G. Sarantites, Phys. Rev. 177, 1640 (1969)

    ADS  Google Scholar 

  63. E.J. Hoffman, D.G. Sarantites, Nucl. Phys. A 157, 584 (1970)

    ADS  Google Scholar 

  64. S. Antman, H. Pettersson, A. Suarez, D.G. Sarantites, Nucl. Phys. A 94, 289 (1967)

    ADS  Google Scholar 

Download references

Acknowledgements

V. Kumar acknowledges financial support from SERB Project (File No. EEQ/2019/000084), Govt. of India. The authors also acknowledge PARAM Shivay Computing facility at IIT (BHU) Varanasi. V. Kumar also acknowledges financial support from IoE Seed Grant, BHU (R/Dev/D/IoE/Seed Grant-II/2021-22/39960). PCS acknowledges financial support from SERB (India), CRG/2022/005167. In addition, we would like to thank the National Supercomputing Mission (NSM) for providing computing resources of ‘PARAM Ganga’ at the Indian Institute of Technology Roorkee, implemented by C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India. We would like to thank Prof. T. Suzuki for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar.

Additional information

Communicated by Kamila Sieja.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Srivastava, P.C. Shell-model study of \(\beta ^+\)/EC-decay half-lives for \(Z=21\)–30 nuclei. Eur. Phys. J. A 59, 237 (2023). https://doi.org/10.1140/epja/s10050-023-01142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01142-0

Navigation