Skip to main content
Log in

PVEMC: isolating the flavor-dependent EMC effect using parity-violating inelastic scattering in SoLID

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In order to better understand the EMC effect, we propose a clean and precise measurement of the flavor dependence of the EMC effect using parity-violating deep inelastic scattering on a \(^{48}\)Ca target. This measurement will provide an extremely sensitive test for flavor dependence in the modification of nuclear parton distribution functions (PDFs) for neutron-rich nuclei. A measurement of the flavor dependence will provide new and vital information and help to explain nucleon modification at the quark level. In addition to helping understand the origin of the EMC effect, a flavor-dependent nuclear pdf modification could significantly impact a range of processes, including neutrino-nucleus scattering, nuclear Drell-Yan processes, and e-A observables at the Electron-Ion Collider. The parity-violating asymmetry \(A_{PV}\) from \(^{48}\)Ca using an 11 GeV beam at \(80~\upmu A\) will be measured using the SoLID detector, proposed for a series of measurements in Hall A at Jefferson Lab. In 68 days of data taking, we will reach 0.7–1.3\(\%\) statistical precision for \(0.2<x<0.7\) with 0.6–0.7\(\% \) systematic uncertainties. The goal is to make the first direct measurement of the flavor dependence of the EMC effect. The precision of the measurement will allow for quantification of the flavor-dependent effects, greatly improving our ability to differentiate between models of the EMC effect and constraining the u- and d-quark contributions in neutron rich nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: This manuscript has no associated data.]

References

  1. D.F. Geesaman, K. Saito, A.W. Thomas, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995)

    Article  ADS  Google Scholar 

  2. P.R. Norton, Rept. Prog. Phys. 66, 1253 (2003)

    Article  ADS  Google Scholar 

  3. S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, Int. J. Mod. Phys. E 23, 1430013 (2014)

    Article  ADS  Google Scholar 

  4. J.T. Londergan, J.C. Peng, A.W. Thomas, Rev. Mod. Phys. 82, 2009 (2010)

    Article  ADS  Google Scholar 

  5. M. Arneodo et al., Nucl. Phys. B 333, 1 (1990). https://doi.org/10.1016/0550-3213(90)90221-X

    Article  ADS  Google Scholar 

  6. G. Bari et al., Phys. Lett. B 163, 282 (1985). https://doi.org/10.1016/0370-2693(85)90238-2

    Article  ADS  Google Scholar 

  7. M. Arneodo et al., Nucl. Phys. B 441, 12 (1995)

    Article  ADS  Google Scholar 

  8. J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Ackerstaff et al., Phys. Lett. B 475, 386 (2000). https://doi.org/10.1016/S0370-2693(99)01493-8 . (Erratum: Phys. Lett. B 567, 339-346 (2003))

  10. J. Arrington et al., Phys. Rev. C 104, 065203 (2021)

    Article  ADS  Google Scholar 

  11. B. Schmookler et al., Nature 566, 354 (2019)

    Article  Google Scholar 

  12. J.J. Aubert et al., Phys. Lett. B 123, 275 (1983)

    Article  ADS  Google Scholar 

  13. J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)

    Article  ADS  Google Scholar 

  14. A. Karki, et al, arXiv:2207.03850 (2022)

  15. J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, Phys. Rev. C 86, 065204 (2012)

    Article  ADS  Google Scholar 

  16. I.C. Cloet, W. Bentz, A.W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

    Article  ADS  Google Scholar 

  17. I.C. Cloet, W. Bentz, A.W. Thomas, Phys. Lett. B 642, 210 (2006)

    Article  ADS  Google Scholar 

  18. J. Arrington, et al, arXiv:2112.00060 (2021)

  19. J. Arrington, N. Fomin, A. Schmidt, Ann. Rev. Nucl. Part. Sci. p. 307 (2022)

  20. J. Arrington, EPJ Web Conf. 113, 01011 (2016)

    Article  Google Scholar 

  21. I.C. Cloët et al., J. Phys. G 46, 093001 (2019)

    Article  ADS  Google Scholar 

  22. I.C. Cloet, W. Bentz, A.W. Thomas, Phys. Rev. Lett. 109, 182301 (2012)

    Article  ADS  Google Scholar 

  23. N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012)

    Article  ADS  Google Scholar 

  24. S. Li et al., Nature 609, 41 (2022)

    Article  ADS  Google Scholar 

  25. R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Phys. Rev. Lett. 98, 132501 (2007)

    Article  ADS  Google Scholar 

  26. M. Alvioli, C. Ciofi degli Atti, H. Morita, Phys. Rev. Lett. 100, 162503 (2008)

    Article  ADS  Google Scholar 

  27. J. Arrington, N. Fomin, Phys. Rev. Lett. 123, 042501 (2019)

    Article  ADS  Google Scholar 

  28. R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Phys. Rev. C 89, 024305 (2014)

    Article  ADS  Google Scholar 

  29. G.P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002). https://doi.org/10.1103/PhysRevLett.88.091802 . (Erratum: Phys. Rev. Lett. 90, 239902 (2003))

  30. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  31. J. Arrington, et al, arXiv:2209.13357 (2022)

  32. P. Achenbach, et al, arXiv:2303.02579 (2023)

  33. A. Accardi, et al, arXiv:2306.09360 (2023)

  34. J. Arrington, R. Beminiwattha, D. Gaskell, J. Mammei, P.E. Reimer, et al, PR12-22-002: First Measurement of the Flavor Dependence of Nuclear PDF Modification Using Parity-Violating Deep Inelastic Scattering (2022). https://solid.jlab.org/DocDB/0004/000469/001/SoLID_PVEMC_Proposal_PAC50_Final.pdf

Download references

Acknowledgements

This work was supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract numbers DE-AC02-05CH11231 and DE-AC05-06OR23177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakitha Beminiwattha.

Additional information

Communicated by Patrizia Rossi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beminiwattha, R., Arrington, J. & Gaskell, D.J. PVEMC: isolating the flavor-dependent EMC effect using parity-violating inelastic scattering in SoLID. Eur. Phys. J. A 59, 194 (2023). https://doi.org/10.1140/epja/s10050-023-01109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01109-1

Navigation