Skip to main content
Log in

Cluster radioactivity from trans-tin to superheavy region using an improved empirical formula

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A simple relation \((aZ_{c} + b)(Z_{d}/Q)^{1/2} + (cZ_{c} + d)\) of estimation of the half-life of cluster emission is further improved for cluster and \(\alpha \)-decays, separately, by incorporating isospin of parent nucleus as well as angular momentum taken away by the emitted particle. This improved version is not only found robust in producing experimental half-lives belonging to the trans-tin and trans-lead regions but also elucidates cluster emission in superheavy nuclei over the usual \(\alpha \)-decay. Considering daughter nuclei around the doubly magic \(^{100}\)Sn and \(^{208}\)Pb nuclei for trans-tin and trans-lead (including superheavy) parents, respectively, a systematic and extensive study of 56 \(\le \) Z \(\le \) 120 isotopes is performed for the light and heavy cluster emissions. A fair competition among cluster emission, \(\alpha \)-decay, spontaneous fission, and \(\beta \)-decay is observed in this broad range resulting in a substantial probability of C to Sr clusters from several nuclei, which demonstrates the adequacy of shell effects. The present article proposes a single, improved, latest-fitted, and effective formula of cluster radioactivity that can be used to estimate precise half-lives for a wide range of the periodic chart from trans-tin to superheavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data in manuscript is already in the various tables. Rest other data can be made available on request.]

References

  1. A. Sandulescu, D. N. Poenaru, W. Greiner, Sov. J. Part. Nucl. II. 11, 528 (1980)

  2. H.J. Rose, G.A. Jones, Nature 307, 245 (1984)

    ADS  Google Scholar 

  3. R. Bonetti, A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)

    Google Scholar 

  4. S. Kumar et al., J. Phys. G Nucl. Part. Phys. 29, 625 (2003)

    ADS  Google Scholar 

  5. S. Kumar, R. Rani, R. Kumar, J. Phys. G Nucl. Part. Phys. 36, 015110 (2009)

    ADS  Google Scholar 

  6. R.K. Gupta et al., Phys. Rev. C 68, 034321 (2003)

    ADS  Google Scholar 

  7. R.K. Gupta, W. Greiner, Int. J. Mod. Phys. E 03, 335 (1994)

    ADS  Google Scholar 

  8. P.B. Price, Annu. Rev. Nucl. Part. Sci. 39, 19 (1989)

    ADS  Google Scholar 

  9. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, Nucl. Phys. A 889, 29 (2012)

    ADS  Google Scholar 

  10. E. Hourani, M. Hussonnois, D.N. Poenaru, Ann. Phys. (Paris) 14, 311 (1989)

    ADS  Google Scholar 

  11. G. Royer, R. Moustabchir, Nucl. Phys. A 683, 182 (2001)

    ADS  Google Scholar 

  12. A. Singh et al., J. Phys. G Nucl. Part. Phys. 49, 025101 (2022)

    ADS  Google Scholar 

  13. S.N. Kuklin, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 71, 014301 (2005)

    ADS  Google Scholar 

  14. Y.T. Oganessian et al., Z. Fur Phys. A Hadron. Nucl. 349, 341 (1994)

    ADS  Google Scholar 

  15. A. Guglielmetti et al., Phys. Rev. C. 52, 740 (1995)

    ADS  Google Scholar 

  16. A. Guglielmetti et al., Nucl. Phys. A 583, 867 (1995)

    ADS  Google Scholar 

  17. K. Prathapan, R.K. Biju, Int. J. Mod. Phys. E 30, 2150106 (2021)

    ADS  Google Scholar 

  18. K.P. Santhosh, T.A. Jose, N.K. Deepak, Phys. Rev. C 105, 054605 (2022)

    ADS  Google Scholar 

  19. G. Royer, Q. Ferrier, M. Pineau, Nucl. Phys. A 1021, 122427 (2022)

    Google Scholar 

  20. C. Nithya, K.P. Santhosh, Nucl. Phys. A 1020, 122400 (2022)

    Google Scholar 

  21. D.N. Poenaru, R.A. Gherghescu, Phys. Rev. C 97, 044621 (2018)

    ADS  Google Scholar 

  22. D.N. Poenaru, H. Stöcker, R.A. Gherghescu, Eur. Phys. J. A 54, 14 (2018)

    ADS  Google Scholar 

  23. Z. Matheson, S.A. Giuliani, W. Nazarewicz, J. Sadhukhan, N. Schunck, Phys. Rev. C 99, 041304 (2019)

    ADS  Google Scholar 

  24. M. Warda, A. Zdeb, L.M. Robledo, Phys. Rev. C 98, 041602(R) (2018)

    ADS  Google Scholar 

  25. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 85, 034615 (2012)

    ADS  Google Scholar 

  26. Y.L. Zhang, Y.Z. Wang, Phys. Rev. C 97, 014318 (2018)

    ADS  Google Scholar 

  27. K.P. Santhosh, R.K. Biju, J. Phys. G Nucl. Part. Phys. 36, 015107 (2009)

    ADS  Google Scholar 

  28. K.P. Santhosh, C. Nithya, Phys. Rev. C 97, 064616 (2018)

    ADS  Google Scholar 

  29. A. Soylu, F. Koyuncu, Eur. Phys. J. A 55, 118 (2019)

  30. A. Jain, P.K. Sharma, S.K. Jain, D.T. Akrawy, G. Saxena, Phys. Scr. 98, 085304 (2023)

    ADS  Google Scholar 

  31. D.N. Poenaru, M. Ivascu, D. Mazilu, Comput. Phys. Commun. 25, 297 (1982)

    ADS  Google Scholar 

  32. D.S. Delion, J. Suhonen, Phys. Rev. C. 64, 064302 (2001)

    ADS  Google Scholar 

  33. D.N. Poenaru, W. Greiner, Handbook of Nuclear Properties. Clarendon Press, Oxford, (1996)

  34. D.N. Poenaru, Nuclear Decay Modes. Institute of Physics Publishing, Bristol, (1996)

  35. S.K. Arun et al., Phys. Rev. C 79, 064616 (2009)

    ADS  Google Scholar 

  36. M. Brack et al., Rev. Mod. Phys. 44, 320 (1972)

    ADS  Google Scholar 

  37. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    ADS  Google Scholar 

  38. D.N. Poenaru et al., Phys. Rev. C 32, 572 (1985)

    ADS  MathSciNet  Google Scholar 

  39. D.N. Poenaru et al., At. Data Nucl. Data Tables 34, 423 (1986)

    ADS  Google Scholar 

  40. Joshua T. Majekodunmi et al., Phys. Rev. C 105, 044617 (2022)

    ADS  Google Scholar 

  41. W.A. Yahya, T.T. Ibrahim, Eur. Phys. J. A 58, 48 (2022)

    ADS  Google Scholar 

  42. S.S. Hosseini, S.M. Motevalli, Phys. Rev. C 107, 034611 (2023)

    ADS  Google Scholar 

  43. R. Dagtas, O. Bayrak, Phys. Scr. 97, 105301 (2022)

  44. H-M. Liu et al., Phys. Scr. 96, 125322 (2021)

  45. Mihai Horoi, J. Phys. G Nucl. Part. Phys. 30, 945 (2004)

    ADS  Google Scholar 

  46. M. Balasubramaniam et al., Phys. Rev. C 70, 017301 (2004)

  47. Z. Ren, C. Xu, Z. Wang, Phys. Rev. C 70, 034304 (2004)

    ADS  Google Scholar 

  48. D. Ni, Z. Ren, T. Dong, C. Xu, Phys. Rev. C 78, 044310 (2008)

    ADS  Google Scholar 

  49. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    ADS  Google Scholar 

  50. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 83, 014601 (2011)

    ADS  Google Scholar 

  51. O.A.P. Tavares, E.L. Medeiros, Eur. Phys. J. A 49, 6 (2013)

    ADS  Google Scholar 

  52. A. Jain, P.K. Sharma, S.K. Jain, J.K. Deegwal, G. Saxena, Nucl. Phys. A 1031, 122597 (2023)

    Google Scholar 

  53. A. Soylu, C. Qi, Nucl. Phys. A 1013, 122221 (2021)

    Google Scholar 

  54. M. Ismail, A.Y. Ellithi, A. Adela, M.A. Abbas, Eur. Phys. J. A 58, 225 (2022)

    ADS  Google Scholar 

  55. Y. Wang et al., Chin. Phys. C 45, 044111 (2021)

    ADS  Google Scholar 

  56. S. Cheng et al., Eur. Phys. J. A 58, 168 (2022)

    ADS  Google Scholar 

  57. Lin-Jing. Qi et al., Chin. Phys. C 47, 064107 (2023)

    ADS  Google Scholar 

  58. Y. Gao, J. Cui, Y. Wang, J. Gu, Sci. Rep. 10, 9119 (2020)

    ADS  Google Scholar 

  59. A. Guglielmetti et al., Phys. Rev. C. 56, R2912 (1997)

    ADS  Google Scholar 

  60. F.G. Kondev et al., Chin. Phys. C 45, 030001 (2021)

    ADS  Google Scholar 

  61. P.K. Sharma, A. Jain, G. Saxena, Nucl. Phys. A 1016, 122318 (2021)

    Google Scholar 

  62. G. Saxena et al., J. Phys. G Nucl. Part. Phys. 50, 015102 (2023)

    ADS  Google Scholar 

  63. A. Soylu et al., Eur. Phys. J. A 48, 128 (2012)

    ADS  Google Scholar 

  64. K. Wei, H.F. Zhang, Phys. Rev. C 96, 021601(R) (2017)

    ADS  Google Scholar 

  65. G. Saxena, A. Jain, P.K. Sharma, P. Saxena, Communicated to Scientific Reports (2023) (under communication)

  66. J-G. Deng, H-F. Zhang, Phys. Lett. B 816, 136247 (2021)

  67. VYu. Denisov, A.A. Khudenko, Phys. Rev. C 79, 054614 (2009)

    ADS  Google Scholar 

  68. K.N. Huang et al., At. Data Nucl. Data Tables 18, 243 (1976)

    ADS  Google Scholar 

  69. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    ADS  Google Scholar 

  70. P. Möller, M.R. Mumpower, T. Kawano, W.D. Myers, At. Data Nucl. Data Tables 125, 1 (2019)

    ADS  Google Scholar 

  71. J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, AIP Conference Proceedings 726, 51 (2004)

    ADS  Google Scholar 

  72. G. Saxena, M. Kumawat, M. Kaushik, S.K. Jain, M. Aggarwal, Phys. Lett. B 788, 1 (2019)

    ADS  Google Scholar 

  73. G. Saxena, M. Kumawat, M. Kaushik, U.K. Singh, S.K. Jain, S. Somorendro Singh, M. Aggarwal, Int. J. Mod. Phys. E 26, 1750072 (2017)

    ADS  Google Scholar 

  74. G. Saxena, M. Kumawat, M. Kaushik, S.K. Jain, M. Aggarwal, Phys. Lett. B 775, 126 (2017)

    ADS  Google Scholar 

  75. U.K. Singh, P.K. Sharma, M. Kaushik, S.K. Jain, D.T. Akrawy, G. Saxena, Nucl. Phys. A 1004, 122035 (2020)

    Google Scholar 

  76. E.O. Fiset, J.R. Nix, Nucl. Phys. A 193, 647 (1972)

    ADS  Google Scholar 

  77. G. Saxena, P.K. Sharma, P. Saxena, J. Phys. G Nucl. Part. Phys. 48, 055103 (2021)

  78. R. Sharma, A. Jain, P.K. Sharma, S.K. Jain, G. Saxena, Phys. Scr. 97, 045307 (2022)

    ADS  Google Scholar 

  79. G. Saxena, A. Jain, P.K. Sharma, Phys. Scr. 96, 125304 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

GS acknowledges the support provided by SERB (DST), Govt. of India under SIR/2022/000566, and would like to thank Prof. Nils Paar for his kind hospitality at the University of Zagreb, Croatia. AJ is indebted to Prof. S. K. Jain, Manipal University, Jaipur, India for his guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Saxena.

Additional information

Communicated by Chong Qi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, G., Jain, A. Cluster radioactivity from trans-tin to superheavy region using an improved empirical formula. Eur. Phys. J. A 59, 189 (2023). https://doi.org/10.1140/epja/s10050-023-01102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01102-8

Navigation