Skip to main content
Log in

Quantum information and quantum simulation of neutrino physics

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In extreme astrophysical environments such as core-collapse supernovae and binary neutron star mergers, neutrinos play a major role in driving various dynamical and microphysical phenomena, such as baryonic matter outflows, the synthesis of heavy elements, and the supernova explosion mechanism itself. The interactions of neutrinos with matter in these environments are flavor-specific, which makes it of paramount importance to understand the flavor evolution of neutrinos. Flavor evolution in these environments can be a highly nontrivial problem thanks to a multitude of collective effects in flavor space, arising due to neutrino-neutrino (\(\nu \)-\(\nu \)) interactions in regions with high neutrino densities. A neutrino ensemble undergoing flavor oscillations under the influence of significant \(\nu \)-\(\nu \) interactions is somewhat analogous to a system of coupled spins with long-range interactions among themselves and with an external field (‘ long-range’ in momentum-space in the case of neutrinos). As a result, it becomes pertinent to consider whether these interactions can give rise to significant quantum correlations among the interacting neutrinos, and whether these correlations have any consequences for the flavor evolution of the ensemble. In particular, one may seek to utilize concepts and tools from quantum information science and quantum computing to deepen our understanding of these phenomena. In this article, we attempt to summarize recent work in this field. Furthermore, we also present some new results in a three-flavor setting, considering complex initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no associated data in a data repository.]

Notes

  1. Here, we exclude the term representing neutrino interactions with ordinary matter (e.g., baryons and charged leptons), since it has a structure that is conceptually similar to the vacuum oscillation term—i.e., consisting of individual neutrinos interacting with a background. In regimes where collective oscillation effects typically dominate, this matter-interaction term can be “ rotated away” with a suitable change-of-basis transformation, resulting in a modified mixing angle and mass-squared splitting compared to the corresponding values in vacuum.

  2. For a multi-neutrino system in a pure quantum state denoted by wavefunction \({|{\Psi }\rangle }\), the density matrix of the entire system is \(\rho = {|{\Psi }\rangle }{\langle {\Psi }|}\). The complement of sub-system A is defined so that \(A \cup A^c\) represents the full quantum system.

  3. In the case of neutrino beams, the definition of the isospin operators can be generalized to represent the entire beam: \(\vec J_A = \sum _{q \in A} \vec J_q\). The polarization vector of the beam is then given by \(\vec {P}_A = 2 \langle \vec {J}_A \rangle /N_A\).

  4. For a 10 MeV neutrino energy and the atmospheric mass-squared splitting \(\delta m^2 \simeq 2.3 \times 10^{-4}\) eV\(^2\), this scale is \(\omega _0 \sim 10^{-16}\) MeV.

References

  1. H.T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo, B. Mueller, Phys. Rept. 442, 38 (2007). https://doi.org/10.1016/j.physrep.2007.02.002. arXiv:astro-ph/0612072

    Article  ADS  Google Scholar 

  2. A. Burrows, D. Vartanyan, Nature 589(7840), 29 (2021). https://doi.org/10.1038/s41586-020-03059-w. arXiv:2009.14157

    Article  ADS  Google Scholar 

  3. G.M. Fuller, W.C. Haxton, (2022). arXiv:2208.08050

  4. F. Foucart, (2022). Living Rev. Comput. Astrophys. 9, 1 (2023). https://doi.org/10.1007/s41115-023-00016-y

  5. K. Kyutoku, K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 97(2), 023009 (2018). https://doi.org/10.1103/PhysRevD.97.023009. arXiv:1710.00827

    Article  ADS  Google Scholar 

  6. E. Grohs, G.M. Fuller, C.T. Kishimoto, M.W. Paris, A. Vlasenko, Phys. Rev. D 93(8), 083522 (2016). https://doi.org/10.1103/PhysRevD.93.083522. arXiv:1512.02205

    Article  ADS  Google Scholar 

  7. R. Surman, G.C. McLaughlin, Astrophys. J. 603, 611 (2004). https://doi.org/10.1086/381672. arXiv:astro-ph/0308004

    Article  ADS  Google Scholar 

  8. G. Martínez-Pinedo, T. Fischer, K. Langanke, A. Lohs, A. Sieverding, M.R. Wu, Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis (2017). https://doi.org/10.1007/978-3-319-21846-5_78

  9. T. Kajino, G.J. Mathews, T. Hayakawa, J. Phys. G 41, 044007 (2014). https://doi.org/10.1088/0954-3899/41/4/044007

    Article  ADS  Google Scholar 

  10. C. Fröhlich, J. Casanova, M. Hempel, M. Liebendörfer, C.A. Melton, A. Perego, AIP Conf. Proc. 1604(1), 178 (2015). https://doi.org/10.1063/1.4883428

    Article  ADS  Google Scholar 

  11. K. Langanke, G. Martinez-Pinedo, A. Sieverding, (2019). https://doi.org/10.22661/AAPPSBL.2018.28.6.41. arXiv:1901.03741

  12. L.F. Roberts, J. Lippuner, M.D. Duez, J.A. Faber, F. Foucart, J.C. Lombardi, S. Ning, C.D. Ott, M. Ponce, Mon. Not. Roy. Astron. Soc. 464(4), 3907 (2017). https://doi.org/10.1093/mnras/stw2622. arXiv:1601.07942

    Article  ADS  Google Scholar 

  13. G. Steigman, Adv. High Energy Phys. 2012, 268321 (2012). https://doi.org/10.1155/2012/268321. arXiv:1208.0032

    Article  Google Scholar 

  14. Y.Z. Qian, G.M. Fuller, G.J. Mathews, R. Mayle, J.R. Wilson, S.E. Woosley, Phys. Rev. Lett. 71, 1965 (1993). https://doi.org/10.1103/PhysRevLett.71.1965

    Article  ADS  Google Scholar 

  15. T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura, D.H. Hartmann, Phys. Rev. Lett. 96, 091101 (2006). https://doi.org/10.1103/PhysRevLett.96.091101. arXiv:astro-ph/0602195

    Article  ADS  Google Scholar 

  16. H. Duan, A. Friedland, G. McLaughlin, R. Surman, J. Phys. G 38, 035201 (2011). https://doi.org/10.1088/0954-3899/38/3/035201. arXiv:1012.0532

    Article  ADS  Google Scholar 

  17. T. Kajino, W. Aoki, M.K. Cheoun, S. Chiba, W. Fujiya, T. Hayakawa, G.J. Mathews, K. Nakamura, K. Shaku, T. Yoshida, AIP Conf. Proc. 1441(1), 375 (2012). https://doi.org/10.1063/1.3700559

    Article  ADS  Google Scholar 

  18. M.R. Wu, Y.Z. Qian, G. Martinez-Pinedo, T. Fischer, L. Huther, Phys. Rev. D 91(6), 065016 (2015). https://doi.org/10.1103/PhysRevD.91.065016. arXiv:1412.8587

    Article  ADS  Google Scholar 

  19. H. Sasaki, T. Kajino, T. Takiwaki, T. Hayakawa, A.B. Balantekin, Y. Pehlivan, Phys. Rev. D 96(4), 043013 (2017). https://doi.org/10.1103/PhysRevD.96.043013. arXiv:1707.09111

    Article  ADS  Google Scholar 

  20. A.B. Balantekin, AIP Conf. Proc. 1947(1), 020012 (2018). https://doi.org/10.1063/1.5030816. arXiv:1710.04108

    Article  Google Scholar 

  21. Z. Xiong, M.R. Wu, Y.Z. Qian, (2019). https://doi.org/10.3847/1538-4357/ab2870. arXiv:1904.09371

  22. Z. Xiong, A. Sieverding, M. Sen, Y.Z. Qian, Astrophys. J. 900(2), 144 (2020). https://doi.org/10.3847/1538-4357/abac5e. arXiv:2006.11414

    Article  ADS  Google Scholar 

  23. M. George, M.R. Wu, I. Tamborra, R. Ardevol-Pulpillo, H.T. Janka, Phys. Rev. D 102(10), 103015 (2020). https://doi.org/10.1103/PhysRevD.102.103015. arXiv:2009.04046

    Article  ADS  Google Scholar 

  24. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978). https://doi.org/10.1103/PhysRevD.17.2369

    Article  ADS  Google Scholar 

  25. S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

    Google Scholar 

  26. S.P. Mikheev, A.Y. Smirnov, Sov. Phys. JETP 64, 4 (1986). arXiv:0706.0454

    ADS  Google Scholar 

  27. D. Notzold, G. Raffelt, Nucl. Phys. B 307, 924 (1988). https://doi.org/10.1016/0550-3213(88)90113-7

    Article  ADS  Google Scholar 

  28. G.M. Fuller, R.W. Mayle, J.R. Wilson, D.N. Schramm, Astrophys. J. 322, 795 (1987). https://doi.org/10.1086/165772

    Article  ADS  Google Scholar 

  29. J.T. Pantaleone, Phys. Rev. D 46, 510 (1992). https://doi.org/10.1103/PhysRevD.46.510

    Article  ADS  Google Scholar 

  30. J.T. Pantaleone, Phys. Lett. B 287, 128 (1992). https://doi.org/10.1016/0370-2693(92)91887-F

    Article  ADS  Google Scholar 

  31. S. Samuel, Phys. Rev. D 48, 1462 (1993). https://doi.org/10.1103/PhysRevD.48.1462

    Article  ADS  Google Scholar 

  32. H. Duan, J.P. Kneller, J. Phys. G 36, 113201 (2009). https://doi.org/10.1088/0954-3899/36/11/113201. arXiv:0904.0974

    Article  ADS  Google Scholar 

  33. H. Duan, G.M. Fuller, Y.Z. Qian, Annu. Rev. Nucl. Part. Sci. 60(1), 569 (2010). https://doi.org/10.1146/annurev.nucl.012809.104524

    Article  ADS  Google Scholar 

  34. S. Chakraborty, R. Hansen, I. Izaguirre, G. Raffelt, Nucl. Phys. B 908, 366 (2016). https://doi.org/10.1016/j.nuclphysb.2016.02.012. arXiv:1602.02766

    Article  ADS  Google Scholar 

  35. I. Tamborra, S. Shalgar, Ann. Rev. Nucl. Part. Sci. 71, 165 (2021). https://doi.org/10.1146/annurev-nucl-102920-050505. arXiv:2011.01948

    Article  ADS  Google Scholar 

  36. S. Richers, M. Sen, (2022). In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of nuclear physics. Springer, Singapore (2022). https://doi.org/10.1007/978-981-15-8818-1_125-1. arXiv:2207.03561

  37. C.W. Bauer, et al., (2022). arXiv:2204.03381

  38. G. Sigl, G. Raffelt, Nucl. Phys. B 406, 423 (1993). https://doi.org/10.1016/0550-3213(93)90175-O

    Article  ADS  Google Scholar 

  39. Y.Z. Qian, G.M. Fuller, Phys. Rev. D 51, 1479 (1995). https://doi.org/10.1103/PhysRevD.51.1479. arXiv:astro-ph/9406073

    Article  ADS  Google Scholar 

  40. S. Shalgar, I. Tamborra, (2023). arXiv:2304.13050

  41. A.B. Balantekin, Y. Pehlivan, J. Phys. G: Nucl. Part. Phys. 34(1), 47 (2006). https://doi.org/10.1088/0954-3899/34/1/004

    Article  ADS  Google Scholar 

  42. L. Johns, (2023). arXiv:2305.04916

  43. N.F. Bell, A.A. Rawlinson, R.F. Sawyer, Phys. Lett. B 573, 86 (2003). https://doi.org/10.1016/j.physletb.2003.08.035. arXiv:hep-ph/0304082

    Article  ADS  Google Scholar 

  44. A. Friedland, C. Lunardini, Phys. Rev. D 68, 013007 (2003). https://doi.org/10.1103/PhysRevD.68.013007. arXiv:hep-ph/0304055

    Article  ADS  Google Scholar 

  45. A. Friedland, C. Lunardini, JHEP 10, 043 (2003). https://doi.org/10.1088/1126-6708/2003/10/043. arXiv:hep-ph/0307140

    Article  ADS  Google Scholar 

  46. A. Friedland, B.H.J. McKellar, I. Okuniewicz, Phys. Rev. D 73, 093002 (2006). https://doi.org/10.1103/PhysRevD.73.093002. arXiv:hep-ph/0602016

    Article  ADS  Google Scholar 

  47. B.H.J. McKellar, I. Okuniewicz, J. Quach, Phys. Rev. D 80, 013011 (2009). https://doi.org/10.1103/PhysRevD.80.013011. arXiv:0903.3139

    Article  ADS  Google Scholar 

  48. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Phys. Rev. Lett. 97, 241101 (2006). https://doi.org/10.1103/PhysRevLett.97.241101. arXiv:astro-ph/0608050

    Article  ADS  Google Scholar 

  49. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Phys. Rev. D 74, 105014 (2006). https://doi.org/10.1103/PhysRevD.74.105014

    Article  ADS  Google Scholar 

  50. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Phys. Rev. Lett. 99, 241802 (2007). https://doi.org/10.1103/PhysRevLett.99.241802

    Article  ADS  Google Scholar 

  51. G.G. Raffelt, A.Y. Smirnov, Phys. Rev. D 76, 081301 (2007). https://doi.org/10.1103/PhysRevD.76.081301

    Article  ADS  Google Scholar 

  52. G.G. Raffelt, A.Y. Smirnov, Phys. Rev. D 76, 125008 (2007). https://doi.org/10.1103/PhysRevD.76.125008. arXiv:0709.4641

    Article  ADS  Google Scholar 

  53. R.F. Sawyer, (2004). arXiv:hep-ph/0408265

  54. J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11(2), 124 (2015). https://doi.org/10.1038/nphys3215

    Article  Google Scholar 

  55. M.J. Cervia, A.V. Patwardhan, A.B. Balantekin, S.N. Coppersmith, C.W. Johnson, Phys. Rev. D 100, 083001 (2019). https://doi.org/10.1103/PhysRevD.100.083001

    Article  ADS  Google Scholar 

  56. E. Rrapaj, Phys. Rev. C 101, 065805 (2020). https://doi.org/10.1103/PhysRevC.101.065805

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Roggero, Phys. Rev. D 104(10), 103016 (2021). https://doi.org/10.1103/PhysRevD.104.103016. arXiv:2102.10188

    Article  ADS  Google Scholar 

  58. A. Roggero, E. Rrapaj, Z. Xiong, Phys. Rev. D 106, 043022 (2022). https://doi.org/10.1103/PhysRevD.106.043022

    Article  ADS  Google Scholar 

  59. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th, Anniversary. (Cambridge University Press, New York, 2011)

    MATH  Google Scholar 

  60. U. Schollwöck, Ann. Phys. (Amsterdam) 326(1), 96 (2011). https://doi.org/10.1016/j.aop.2010.09.012

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Paeckel, T. Köhler, A. Swoboda, S.R. Manmana, U. Schollwöck, C. Hubig, Ann. Phys. (N. Y.) 411, 167998 (2019). https://doi.org/10.1016/j.aop.2019.167998. https://www.sciencedirect.com/science/article/pii/S0003491619302532. Accessed 31 Oct 2019

  62. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004). https://doi.org/10.1103/PhysRevLett.93.040502. arXiv:quant-ph/0310089

    Article  ADS  Google Scholar 

  63. N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 100, 030504 (2008). https://doi.org/10.1103/PhysRevLett.100.030504. arXiv:0705.0292

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Wong, N. Christensen, Phys. Rev. A 63, 044301 (2001). https://doi.org/10.1103/PhysRevA.63.044301

    Article  ADS  Google Scholar 

  65. M. Illa, M.J. Savage, (2022). Phys. Rev. Lett. 130, 221003 (2023). https://doi.org/10.1103/PhysRevLett.130.221003. arXiv:2210.08656

  66. H. Duan, G.M. Fuller, Y.Z. Qian, Phys. Rev. D 74, 123004 (2006). https://doi.org/10.1103/PhysRevD.74.123004

    Article  ADS  Google Scholar 

  67. Y. Pehlivan, A.B. Balantekin, T. Kajino, T. Yoshida, Phys. Rev. D 84, 065008 (2011). https://doi.org/10.1103/PhysRevD.84.065008

    Article  ADS  Google Scholar 

  68. M. Gaudin, J. Phys. France 37(10), 1087 (1976). https://doi.org/10.1051/jphys:0197600370100108700

    Article  Google Scholar 

  69. R.W. Richardson, Phys. Lett. 3(6), 277 (1963). https://doi.org/10.1016/0031-9163(63)90259-2

    Article  ADS  Google Scholar 

  70. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964). https://doi.org/10.1016/0029-5582(64)90687-X

    Article  Google Scholar 

  71. R.W. Richardson, J. Math. Phys. 6(7), 1034 (1965). https://doi.org/10.1063/1.1704367

    Article  ADS  Google Scholar 

  72. H. Bethe, Z. Angew. Phys. 71(3–4), 205 (1931). https://doi.org/10.1007/BF01341708

    Article  Google Scholar 

  73. S. Birol, Y. Pehlivan, A.B. Balantekin, T. Kajino, Phys. Rev. D 98(8), 083002 (2018). https://doi.org/10.1103/PhysRevD.98.083002. arXiv:1805.11767

    Article  ADS  Google Scholar 

  74. A.V. Patwardhan, M.J. Cervia, A. Baha Balantekin, Phys. Rev. D 99(12), 123013 (2019). https://doi.org/10.1103/PhysRevD.99.123013. arXiv:1905.04386

    Article  ADS  Google Scholar 

  75. Y. Pehlivan, A.L. Subaşı, N. Ghazanfari, S. Birol, H. Yüksel, Phys. Rev. D 95(6), 063022 (2017). https://doi.org/10.1103/PhysRevD.95.063022. arXiv:1603.06360

    Article  ADS  Google Scholar 

  76. A.V. Patwardhan, M.J. Cervia, A.B. Balantekin, Phys. Rev. D 104(12), 123035 (2021). https://doi.org/10.1103/PhysRevD.104.123035. arXiv:2109.08995

    Article  ADS  Google Scholar 

  77. Z. Xiong, Phys. Rev. D 105(10), 103002 (2022). https://doi.org/10.1103/PhysRevD.105.103002. arXiv:2111.00437

    Article  ADS  Google Scholar 

  78. J.D. Martin, A. Roggero, H. Duan, J. Carlson, V. Cirigliano, Phys. Rev. D 105(8), 083020 (2022). https://doi.org/10.1103/PhysRevD.105.083020. arXiv:2112.12686

    Article  ADS  Google Scholar 

  79. J.D. Martin, A. Roggero, H. Duan, J. Carlson, (2023). arXiv:2301.07049

  80. R.F. Sawyer, Phys. Rev. D 72, 045003 (2005). https://doi.org/10.1103/PhysRevD.72.045003. arXiv:hep-ph/0503013

    Article  ADS  Google Scholar 

  81. I. Izaguirre, G. Raffelt, I. Tamborra, Phys. Rev. Lett. 118, 021101 (2017). https://doi.org/10.1103/PhysRevLett.118.021101

    Article  ADS  Google Scholar 

  82. S. Pastor, G. Raffelt, D.V. Semikoz, Phys. Rev. D 65, 053011 (2002). https://doi.org/10.1103/PhysRevD.65.053011

    Article  ADS  Google Scholar 

  83. G.M. Fuller, Y.Z. Qian, Phys. Rev. D 73, 023004 (2006). https://doi.org/10.1103/PhysRevD.73.023004

    Article  ADS  Google Scholar 

  84. G.G. Raffelt, I. Tamborra, Phys. Rev. D 82, 125004 (2010). https://doi.org/10.1103/PhysRevD.82.125004

    Article  ADS  Google Scholar 

  85. E. Akhmedov, A. Mirizzi, Nuclear Physics B 908, 382 (2016). https://doi.org/10.1016/j.nuclphysb.2016.02.011. https://www.sciencedirect.com/science/article/pii/S0550321316000559. Accessed 17 Feb 2016. Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015

  86. V.A. Kostelecký, S. Samuel, Phys. Rev. D 52, 621 (1995). https://doi.org/10.1103/PhysRevD.52.621

    Article  ADS  Google Scholar 

  87. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Phys. Rev. D 75, 125005 (2007). https://doi.org/10.1103/PhysRevD.75.125005

    Article  ADS  Google Scholar 

  88. B. Dasgupta, A. Dighe, G.G. Raffelt, A.Y. Smirnov, Phys. Rev. Lett. 103, 051105 (2009). https://doi.org/10.1103/PhysRevLett.103.051105

    Article  ADS  Google Scholar 

  89. J.D. Martin, J. Carlson, H. Duan, Phys. Rev. D 101, 023007 (2020). https://doi.org/10.1103/PhysRevD.101.023007

    Article  ADS  Google Scholar 

  90. A. Roggero, Phys. Rev. D 104, 123023 (2021). https://doi.org/10.1103/PhysRevD.104.123023

    Article  ADS  Google Scholar 

  91. M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013). https://doi.org/10.1103/PhysRevLett.110.135704

    Article  ADS  Google Scholar 

  92. M. Heyl, Rep. Prog. Phys. 81(5), 054001 (2018). https://doi.org/10.1088/1361-6633/aaaf9a

    Article  ADS  MathSciNet  Google Scholar 

  93. T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Physics Reports 435(2), 33 (2006). https://doi.org/10.1016/j.physrep.2006.09.003. https://www.sciencedirect.com/science/article/pii/S0370157306003310. Accessed 13 Sept 2006

  94. M. Heyl, Phys. Rev. Lett. 113, 205701 (2014). https://doi.org/10.1103/PhysRevLett.113.205701

    Article  ADS  Google Scholar 

  95. B. Žunkovič, M. Heyl, M. Knap, A. Silva, Phys. Rev. Lett. 120, 130601 (2018). https://doi.org/10.1103/PhysRevLett.120.130601

    Article  ADS  Google Scholar 

  96. A. Roggero, Phys. Rev. D 104, 123023 (2021). https://doi.org/10.1103/PhysRevD.104.123023

    Article  ADS  Google Scholar 

  97. A. Gambassi, A. Silva, Phys. Rev. Lett. 109, 250602 (2012). https://doi.org/10.1103/PhysRevLett.109.250602

    Article  ADS  Google Scholar 

  98. B. Sciolla, G. Biroli, J. Stat. Mech: Theory Exp. 2011(11), P11003 (2011). https://doi.org/10.1088/1742-5468/2011/11/p11003

    Article  Google Scholar 

  99. B. Sciolla, G. Biroli, Phys. Rev. B 88, 201110 (2013). https://doi.org/10.1103/PhysRevB.88.201110

    Article  ADS  Google Scholar 

  100. B. Žunkovič, M. Heyl, M. Knap, A. Silva, Phys. Rev. Lett. 120, 130601 (2018). https://doi.org/10.1103/PhysRevLett.120.130601

    Article  ADS  Google Scholar 

  101. D. Lacroix, A.B. Balantekin, M.J. Cervia, A.V. Patwardhan, P. Siwach, Phys. Rev. D 106, 123006 (2022). arXiv:2205.09384

  102. K. Husimi, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22(4), 264 (1940). https://doi.org/10.11429/ppmsj1919.22.4_264

  103. D. Lacroix, S. Ayik, Eur. Phys. J. A 50, 95 (2014). https://doi.org/10.1140/epja/i2014-14095-8. arXiv:1402.2393

    Article  ADS  Google Scholar 

  104. C. Volpe, D. Väänänen, C. Espinoza, Phys. Rev. D 87(11), 113010 (2013). https://doi.org/10.1103/PhysRevD.87.113010. arXiv:1302.2374

    Article  ADS  Google Scholar 

  105. M.J. Cervia, P. Siwach, A.V. Patwardhan, A.B. Balantekin, S.N. Coppersmith, C.W. Johnson, Phys. Rev. D 105, 123025 (2022). https://doi.org/10.1103/PhysRevD.105.123025

    Article  ADS  Google Scholar 

  106. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). https://doi.org/10.1103/PhysRevLett.91.147902

    Article  ADS  Google Scholar 

  107. S.B. Shlosman, Commun. Math. Phys. 102(4), 679 (1986). https://doi.org/10.1007/BF01221652

    Article  ADS  Google Scholar 

  108. B. Hall, A. Roggero, A. Baroni, J. Carlson, Phys. Rev. D 104, 063009 (2021). https://doi.org/10.1103/PhysRevD.104.063009

    Article  ADS  Google Scholar 

  109. K. Yeter-Aydeniz, S. Bangar, G. Siopsis, R.C. Pooser, Quant. Inf. Proc. 21(3), 84 (2022). https://doi.org/10.1007/s11128-021-03348-x. arXiv:2104.03273

    Article  Google Scholar 

  110. M. Illa, M.J. Savage, Phys. Rev. A 106, 052605 (2022). https://doi.org/10.1103/PhysRevA.106.052605

    Article  ADS  Google Scholar 

  111. V. Amitrano, A. Roggero, P. Luchi, F. Turro, L. Vespucci, F. Pederiva, Phys. Rev. D 107, 023007 (2023). https://doi.org/10.1103/PhysRevD.107.023007

    Article  ADS  Google Scholar 

  112. G. Fogli, E. Lisi, A. Marrone, I. Tamborra, JCAP 04, 030 (2009). https://doi.org/10.1088/1475-7516/2009/04/030. arXiv:0812.3031

    Article  ADS  Google Scholar 

  113. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Phys. Rev. Lett. 100, 021101 (2008). https://doi.org/10.1103/PhysRevLett.100.021101

    Article  ADS  Google Scholar 

  114. B. Dasgupta, A. Dighe, A. Mirizzi, G.G. Raffelt, Phys. Rev. D 77, 113007 (2008). https://doi.org/10.1103/PhysRevD.77.113007

    Article  ADS  Google Scholar 

  115. B. Dasgupta, A. Dighe, G.G. Raffelt, A.Y. Smirnov, Phys. Rev. Lett. 103, 051105 (2009). https://doi.org/10.1103/PhysRevLett.103.051105

    Article  ADS  Google Scholar 

  116. B. Dasgupta, A. Mirizzi, I. Tamborra, R. Tomàs, Phys. Rev. D 81, 093008 (2010). https://doi.org/10.1103/PhysRevD.81.093008

    Article  ADS  Google Scholar 

  117. A. Friedland, Phys. Rev. Lett. 104, 191102 (2010). https://doi.org/10.1103/PhysRevLett.104.191102

    Article  ADS  Google Scholar 

  118. S. Airen, F. Capozzi, S. Chakraborty, B. Dasgupta, G. Raffelt, T. Stirner, JCAP 12, 019 (2018). https://doi.org/10.1088/1475-7516/2018/12/019. arXiv:1809.09137

    Article  ADS  Google Scholar 

  119. M. Chakraborty, S. Chakraborty, JCAP 01, 005 (2020). https://doi.org/10.1088/1475-7516/2020/01/005. arXiv:1909.10420

    Article  ADS  Google Scholar 

  120. S. Shalgar, I. Tamborra, Phys. Rev. D 104(2), 023011 (2021). https://doi.org/10.1103/PhysRevD.104.023011. arXiv:2103.12743

    Article  ADS  Google Scholar 

  121. P. Siwach, A.M. Suliga, A.B. Balantekin, Phys. Rev. D 107, 023019 (2023). https://doi.org/10.1103/PhysRevD.107.023019

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0019465. AVP acknowledges support from the U.S. Department of Energy under contract number DE-AC02-76SF00515. MJC: the U.S. Department of Energy, Office of Nuclear Physics under Award Number DE-SC0021143. ABB acknowledges support from the NSF grants PHY-2108339 and PHY-2020275. ER work was funded by iTHEMS RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol V. Patwardhan.

Additional information

Communicated by Denis Lacroix.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balantekin, A.B., Cervia, M.J., Patwardhan, A.V. et al. Quantum information and quantum simulation of neutrino physics. Eur. Phys. J. A 59, 186 (2023). https://doi.org/10.1140/epja/s10050-023-01092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01092-7

Navigation