Abstract
Measurements of (\(\gamma ,p\)) and (\(\gamma ,\alpha \)) photonuclear reaction cross sections are relevant for several nucleosynthesis scenarios, from the primordial Big Bang, to stellar burning, and the p-process. Studies of photonuclear reaction cross sections marked a steady development in the last 20 years with the advent of mono-energetic \(\gamma \)-ray beam facilities and improved detection methods. Charged-particle detection from photon-induced reactions in solid targets is mainly achieved with silicon-strip detectors, while time projection chambers were developed for measurements with active gas targets. This review tracks the evolution of charged-particle detection methods and highlights recent \(^{7}\)Li(\(\gamma ,t\))\(^{4}\)He and \(^{16}\)O(\(\gamma ,\alpha \))\(^{12}\)C cross section measurements using mono-energetic \(\gamma \)-ray beams.
This is a preview of subscription content, access via your institution.









Data Availability
This manuscript has associated data in a data repository. [Authors’ comment: The datasets analyzed during the current study are available from the corresponding author on reasonable request.]
References
K. Strauch, Recent studies of photonuclear reactions. Annu. Rev. Nucl. Sci. 2(1), 105–128 (1953). https://doi.org/10.1146/annurev.ns.02.120153.000541
A. Zilges, D.L. Balabanski, J. Isaak, N. Pietralla, Photonuclear reactions—from basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903
C.R. Howell, M.W. Ahmed, A. Afanasev, D. Alesini, J.R.M. Annand, A. Aprahamian, D.L. Balabanski, S.V. Benson, A. Bernstein, C.R. Brune, J. Byrd, B.E. Carlsten, A.E. Champagne, S. Chattopadhyay, D. Davis, E.J. Downie, J.M. Durham, G. Feldman, H. Gao, C.G.R. Geddes, H.W. Grießhammer, R. Hajima, H. Hao, D. Hornidge, J. Isaak, R.V.F. Janssens, D.P. Kendellen, M.A. Kovash, P.P. Martel, U.-G. Meißner, R. Miskimen, B. Pasquini, D.R. Phillips, N. Pietralla, D. Savran, M.R. Schindler, M.H. Sikora, W.M. Snow, R.P. Springer, C. Sun, C. Tang, B. Tiburzi, A.P. Tonchev, W. Tornow, C.A. Ur, D. Wang, H.R. Weller, V. Werner, Y.K. Wu, J. Yan, Z. Zhao, A. Zilges, F. Zomer, International workshop on next generation gamma-ray source. J. Phys. G Nucl. Part. Phys. 49(1), 010502 (2021). https://doi.org/10.1088/1361-6471/ac2827
H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Research opportunities at the upgraded HI\(\gamma \)S facility. Prog. Part. Nucl. Phys. 62, 257–303 (2009). https://doi.org/10.1016/j.ppnp.2008.07.001
G. Baur, C.A. Bertulani, H. Rebel, Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest. Nucl. Phys. A 458(1), 188–204 (1986). https://doi.org/10.1016/0375-9474(86)90290-3
G. Junghans, K. Bangert, U.E.P. Berg, R. Stock, K. Wienhard, The photodisintegration of \(^6\)Li and \(^7\)Li. Z. Physik A 291(4), 353–365 (1979). https://doi.org/10.1007/BF01408386
T. Shima, S. Naito, Y. Nagai, T. Baba, K. Tamura, T. Takahashi, T. Kii, H. Ohgaki, H. Toyokawa, Simultaneous measurement of the photodisintegration of \(^{4}\rm He \) in the giant dipole resonance region. Phys. Rev. C 72, 044004 (2005). https://doi.org/10.1103/PhysRevC.72.044004
S. Naito, Y. Nagai, T. Shima, H. Makii, K. Mishima, K. Tamura, H. Toyokawa, H. Ohgaki, J. Golak, R. Skibi ński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, New data for total \(^{3}\)He(\(\gamma ,p\))d and \(^{3}\)He(\(\gamma , pp\))n cross sections compared to current theory. Phys. Rev. C 73, 034003 (2006). https://doi.org/10.1103/PhysRevC.73.034003
C. Ugalde, B. DiGiovine, D. Henderson, R.J. Holt, K.E. Rehm, A. Sonnenschein, A. Robinson, R. Raut, G. Rusev, A.P. Tonchev, First determination of an astrophysical cross section with a bubble chamber: the \(^{15}\)N(\(\alpha , \gamma \))\(^{19}\)F reaction. Phys. Lett. B 719(1), 74–77 (2013). https://doi.org/10.1016/j.physletb.2012.12.068
R.P. Taleyarkhan, B. Archambault, A. Sansone, T.F. Grimes, A. Hagen, Neutron spectroscopy & H*10 dosimetry with tensioned metastable fluid detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 959, 163278 (2020). https://doi.org/10.1016/j.nima.2019.163278
O. Tesileanu, M. Gai, A. Anzalone, C. Balan, J.S. Bihalowicz, M. Cwiok, W. Dominik, S. Gales, D.G. Ghita, Z. Janas, D.P. Kendellen, M.L. Cognata, C. Matei, K. Mikszuta, C. Petcu, M. Pfutzner, T. Matulewicz, C. Mazzocchi, C. Spitaleri, Charged particle detection at ELI-NP. Rom. Rep. Phys. 68, 699 (2016)
H.Y. Lan, Y. Xu, W. Luo, D.L. Balabanski, S. Goriely, M. La Cognata, C. Matei, A. Anzalone, S. Chesnevskaya, G.L. Guardo et al., Determination of the photodisintegration reaction rates involving charged particles: systematic calculations and proposed measurements based on the facility for extreme light infrastructure-nuclear physics. Phys. Rev. C 98(5), 054601 (2018). https://doi.org/10.1103/PhysRevC.98.054601
H.Y. Lan, W. Luo, Y. Xu, D.L. Balabanski, G.L. Guardo, M. La Cognata, D. Lattuada, C. Matei, R.G. Pizzone, T. Rauscher, J.L. Zhou, Feasibility of studying astrophysically important charged-particle emission with the variable energy \(\gamma \)-ray system at the extreme light infrastructure-nuclear physics facility. Phys. Rev. C 105, 044618 (2022). https://doi.org/10.1103/PhysRevC.105.044618
H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Forward photodisintegration of the deuteron at 10.74 MeV photon energy. Few Body Syst. 1, 135–141 (1986). https://doi.org/10.1007/BF01077004
V.P. Likhachev, M.N. Martins, M.T.F. da Cruz, J.D.T. Arruda-Neto, L.P. Geraldo, R. Semmler, J.F. Dias, Triton angular distributions from the \({}^{7}\)Li \((\gamma , t)\alpha \) reaction near threshold. Phys. Rev. C 59, 525–527 (1999). https://doi.org/10.1103/PhysRevC.59.525
J. Kemmer, Fabrication of low noise silicon radiation detectors by the planar process. Nucl. Instrum. Methods 169(3), 499–502 (1980). https://doi.org/10.1016/0029-554X(80)90948-9
T. Davinson, W. Bradfield-Smith, S. Cherubini, A. DiPietro, W. Galster, A.M. Laird, P. Leleux, A. Ninane, A.N. Ostrowski, A.C. Shotter, J. Vervier, P.J. Woods, Louvain–Edinburgh detector array (LEDA): a silicon detector array for use with radioactive nuclear beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 454(2), 350–358 (2000). https://doi.org/10.1016/S0168-9002(00)00479-4
D.W. Bardayan, J.C. Blackmon, C.R. Brune, A.E. Champagne, A.A. Chen, J.M. Cox, T. Davinson, V.Y. Hansper, M.A. Hofstee, B.A. Johnson, R.L. Kozub, Z. Ma, P.D. Parker, D.E. Pierce, M.T. Rabban, A.C. Shotter, M.S. Smith, K.B. Swartz, D.W. Visser, P.J. Woods, The astrophysically important \({3}^{+}\) state in \({}^{18}\)Ne and the \({}^{17}\)F \((p,\gamma {)}^{18}\)Ne stellar rate. Phys. Rev. C 62, 055804 (2000). https://doi.org/10.1103/PhysRevC.62.055804
D.W. Visser, J.A. Caggiano, R. Lewis, W.B. Handler, A. Parikh, P.D. Parker, Particle decay branching ratios for states of astrophysical importance in \(^{19}\)Ne. Phys. Rev. C 69, 048801 (2004). https://doi.org/10.1103/PhysRevC.69.048801
A.S.J. Murphy, M. Aliotta, T. Davinson, C. Ruiz, P.J. Woods, J.M. D’Auria, L. Buchmann, A.A. Chen, A.M. Laird, F. Sarazin, P. Walden, B.R. Fulton, J.E. Pearson, B.A. Brown, Level structure of \(^{21}\)Mg: nuclear and astrophysical implications. Phys. Rev. C 73, 034320 (2006). https://doi.org/10.1103/PhysRevC.73.034320
B.T. Roeder, M. McCleskey, L. Trache, A.A. Alharbi, A. Banu, S. Cherubini, T. Davinson, V.Z. Goldberg, M. Gulino, R.G. Pizzone, E. Simmons, R. Spartà , A. Spiridon, C. Spitaleri, J.P. Wallace, R.E. Tribble, P.J. Woods, The Texas–Edinburgh–Catania silicon array (TECSA): a detector for nuclear astrophysics and nuclear structure studies with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 634(1), 71–76 (2011). https://doi.org/10.1016/j.nima.2011.01.035
P. Adsley, R. Neveling, P. Papka, Z. Dyers, J.W. Brümmer, C.A. Diget, N.J. Hubbard, K.C.W. Li, A. Long, D.J. Marin-Lambarri, L. Pellegri, V. Pesudo, L.C. Pool, F.D. Smit, S. Triambak, CAKE: the coincidence array for K600 experiments. J. Instrument. 12(02), 02004 (2017). https://doi.org/10.1088/1748-0221/12/02/T02004
E.C. Good, B. Sudarsan, K.T. Macon, C.M. Deibel, L.T. Baby, J.C. Blackmon, C. Benetti, J.C. Esparza, N. Gerken, K. Hanselman, G.W. McCann, A.B. Morelock, J.F. Perello, K.H. Pham, E. Rubino, E. Temanson, I. Wiedenhöver, SABRE: the silicon array for branching ratio experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1003, 165299 (2021). https://doi.org/10.1016/j.nima.2021.165299
S.D. Pain, J.A. Cizewski, R. Hatarik, K.L. Jones, J.S. Thomas, D.W. Bardayan, J.C. Blackmon, C.D. Nesaraja, M.S. Smith, R.L. Kozub, M.S. Johnson, Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 261(1), 1122–1125 (2007). https://doi.org/10.1016/j.nimb.2007.04.289. (The Application of Accelerators in Research and Industry)
S. Chesnevskaya, D.L. Balabanski, D. Choudhury, P. Constantin, D.M. Filipescu, D.G. Ghita, G.L. Guardo, D. Lattuada, C. Matei, A. Rotaru, A. State, Performance studies of X3 silicon detectors for the future ELISSA array at ELI-NP. J. Inst. 13(5), 05006 (2018). https://doi.org/10.1088/1748-0221/13/05/T05006
G.L. Engel, M. Sadasivam, M. Nethi, J.M. Elson, L.G. Sobotka, R.J. Charity, A multi-channel integrated circuit for use in low- and intermediate-energy nuclear physics-HINP16C. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 573(3), 418–426 (2007). https://doi.org/10.1016/j.nima.2006.12.052
M.S. Wallace, M.A. Famiano, M.-J. van Goethem, A.M. Rogers, W.G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, B.E. Nett, D.J. Oostdyk, R. Krishnasamy, M.B. Tsang, R.T. de Souza, S. Hudan, L.G. Sobotka, R.J. Charity, J. Elson, G.L. Engel, The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 583(2), 302–312 (2007). https://doi.org/10.1016/j.nima.2007.08.248
D.W. Bardayan, S. Ahn, J.C. Blackmon, A.J. Burkhart, K.Y. Chae, J.A. Cizewski, J. Elson, S. Hardy, R.L. Kozub, L. Linhardt, B. Manning, M. Matoš, S.D. Pain, L.G. Sobotka, M.S. Smith, Construction and commissioning of the SuperORRUBA detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 711, 160–165 (2013). https://doi.org/10.1016/j.nima.2013.01.035
K.A. Chipps, U. Greife, D.W. Bardayan, J.C. Blackmon, A. Kontos, L.E. Linhardt, M. Matos, S.D. Pain, S.T. Pittman, A. Sachs, H. Schatz, K.T. Schmitt, M.S. Smith, P. Thompson, The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 763, 553–564 (2014). https://doi.org/10.1016/j.nima.2014.06.042
K. Schmidt, K.A. Chipps, S. Ahn, D.W. Bardayan, J. Browne, U. Greife, Z. Meisel, F. Montes, P.D. O’Malley, W.-J. Ong, S.D. Pain, H. Schatz, K. Smith, M.S. Smith, P.J. Thompson, Status of the JENSA gas-jet target for experiments with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 911, 1–9 (2018). https://doi.org/10.1016/j.nima.2018.09.052
M. Munch, C. Matei, S.D. Pain, M.T. Febbraro, K.A. Chipps, H.J. Karwowski, C.A. Diget, A. Pappalardo, S. Chesnevskaya, G.L. Guardo, D. Walter, D.L. Balabanski, F.D. Becchetti, C.R. Brune, K.Y. Chae, J. Frost-Schenk, M.J. Kim, M.S. Kwag, M. La Cognata, D. Lattuada, R.G. Pizzone, G.G. Rapisarda, G.V. Turturica, C.A. Ur, Y. Xu, Measurement of the \({}^{7}\)Li \({(\gamma ,t)}^{4}\)He ground-state cross section between \({E}_{\gamma }=4.4\) and 10 MeV. Phys. Rev. C 101, 055801 (2020). https://doi.org/10.1103/PhysRevC.101.055801
D. Bemmerer, F. Confortola, H. Costantini, A. Formicola, G. Gyürky, R. Bonetti, C. Broggini, P. Corvisiero, Z. Elekes, Z. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Imbriani, M. Junker, M. Laubenstein, A. Lemut, B. Limata, V. Lozza, M. Marta, R. Menegazzo, P. Prati, V. Roca, C. Rolfs, C.R. Alvarez, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H.P. Trautvetter, Activation measurement of the \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be cross section at low energy. Phys. Rev. Lett. 97, 122502 (2006). https://doi.org/10.1103/PhysRevLett.97.122502
A. Di Leva, L. Gialanella, R. Kunz, D. Rogalla, D. Schürmann, F. Strieder, M. De Cesare, N. De Cesare, A. D’Onofrio, Z. Fülöp, G. Gyürky, G. Imbriani, G. Mangano, A. Ordine, V. Roca, C. Rolfs, M. Romano, E. Somorjai, F. Terrasi, Stellar and primordial nucleosynthesis of \(^{7}\)Be: Measurement of \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be. Phys. Rev. Lett. 102, 232502 (2009). https://doi.org/10.1103/PhysRevLett.102.232502
T. Neff, Microscopic calculation of the \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be and \(^{3}\)H\((\alpha ,\gamma )^{7}\)Li capture cross sections using realistic interactions. Phys. Rev. Lett. 106, 042502 (2011). https://doi.org/10.1103/PhysRevLett.106.042502
J. Dohet-Eraly, P. Navretil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Be and \(^3\)H(\(\alpha \),\(\gamma \))\(^7\)Li astrophysical S factors from the no-core shell model with continuum. Phys. Lett. B 757, 430–436 (2016). https://doi.org/10.1016/j.physletb.2016.04.021
C.R. Brune, R.W. Kavanagh, C. Rolfs, \(^{3}\)H \((\alpha ,\gamma )^{7}\)Li reaction at low energies. Phys. Rev. C 50, 2205–2218 (1994). https://doi.org/10.1103/PhysRevC.50.2205
K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Measurement of the (\(\gamma \), n) cross section of the nucleus 197Au close above the reaction threshold. Nucl. Phys. A 707(1), 241–252 (2002). https://doi.org/10.1016/S0375-9474(02)00922-3
O. Itoh, H. Utsunomiya, H. Akimune, T. Kondo, M. Kamata, T. Yamagata, H. Toyokawa, H. Harada, F. Kitatani, S. Goko, C. Nair, Y.-W. Lui, Photoneutron cross sections for au revisited: measurements with laser compton scattering \(\gamma \)-Rays and data reduction by a least-squares method. J. Nucl. Sci. Technol. 48(5), 834–840 (2011)
R.E. Azuma, E. Uberseder, E.C. Simpson, C.R. Brune, H. Costantini, R.J. de Boer, J. Görres, M. Heil, P.J. LeBlanc, C. Ugalde, M. Wiescher, AZURE: an \(R\)-matrix code for nuclear astrophysics. Phys. Rev. C 81(4), 045805 (2010). https://doi.org/10.1103/PhysRevC.81.045805
E. Uberseder, R.J. deBoer, AZURE2 Users Manual (2015). azure.nd.edu
J.-J. Dormard, M. Assié, L. Grassi, E. Rauly, D. Beaumel, G. Brulin, M. Chabot, J.-L. Coacolo, F. Flavigny, B. Genolini, F. Hammache, T.I. Barkach, E. Rindel, P. Rosier, N. de Séréville, E. Wanlin, Pulse shape discrimination for GRIT: beam test of a new integrated charge and current preamplifier coupled with high granularity silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1013, 165641 (2021). https://doi.org/10.1016/j.nima.2021.165641
M. Labiche, W.N. Catford, R.C. Lemmon, C.N. Timis, R. Chapman, N.A. Orr, B. Fernández-DomÃnguez, G. Moores, N.L. Achouri, N. Amzal, S. Appleton, N.I. Ashwood, T.D. Baldwin, M. Burns, L. Caballero, J. Cacitti, J.M. Casadjian, M. Chartier, N. Curtis, K. Faiz, G. de France, M. Freer, J.M. Gautier, W. Gelletly, G. Iltis, B. Lecornu, X. Liang, C. Marry, Y. Merrer, L. Olivier, S.D. Pain, V.F.E. Pucknell, B. Raine, M. Rejmund, B. Rubio, F. Saillant, H. Savajols, O. Sorlin, K. Spohr, C. Theisen, G. Voltolini, D.D. Warner, TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 614(3), 439–448 (2010). https://doi.org/10.1016/j.nima.2010.01.009
V. Bildstein, R. Gernhäuser, T. Kröll, R. Krücken, R. Raabe, P.V. Duppen, A new setup for transfer reactions at REX-ISOLDE. Prog. Part. Nucl. Phys. 59(1), 386–388 (2007). https://doi.org/10.1016/j.ppnp.2007.01.010
C. Berner, L. Werner, R. Gernhäuser, T. Kröll, HI-TREX—a highly integrated transfer setup at REX-(HIE)ISOLDE. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 987, 164827 (2021). https://doi.org/10.1016/j.nima.2020.164827
C.A. Diget, S.P. Fox, A. Smith, S. Williams, M. Porter-Peden, L. Achouri, P. Adsley, H. Al-Falou, R.A.E. Austin, G.C. Ball, J.C. Blackmon, S. Brown, W.N. Catford, A.A. Chen, J. Chen, R.M. Churchman, J. Dech, D.D. Valentino, M. Djongolov, B.R. Fulton, A. Garnsworthy, G. Hackman, U. Hager, R. Kshetri, L. Kurchaninov, A.M. Laird, J.-P. Martin, M. Matos, J.N. Orce, N.A. Orr, C.J. Pearson, C. Ruiz, F. Sarazin, S. Sjue, D. Smalley, C.E. Svensson, M. Taggart, E. Tardiff, G.L. Wilson, SHARC: silicon highly-segmented array for reactions and coulex used in conjunction with the TIGRESS \(\gamma \)-ray spectrometer. J. Instrument. 6(02), 02005 (2011). https://doi.org/10.1088/1748-0221/6/02/P02005
S.D. Pain, A. Ratkiewicz, T. Baugher, M. Febbraro, A. Lepailleur, A.D. Ayangeakaa, J. Allen, J.T. Anderson, D.W. Bardayan, J.C. Blackmon, R. Blanchard, S. Burcher, M.P. Carpenter, S.M. Cha, K.Y. Chae, K.A. Chipps, J.A. Cizewski, A. Engelhardt, H. Garland, K.L. Jones, R.L. Kozub, E.J. Lee, M.R. Hall, O. Hall, J. Hu, P.D. O’Malley, I. Marsh, B.C. Rasco, D. Santiago-Gonzales, D. Seweryniak, S. Shadrick, H. Sims, K. Smith, M.S. Smith, P.-L. Tai, P. Thompson, C. Thornsberry, R.L. Varner, D. Walter, G.L. Wilson, S. Zhu, Direct reaction measurements using GODDESS. Phys. Proc. 90, 455–462 (2017). https://doi.org/10.1016/j.phpro.2017.09.051
C.A. Ur, A. Zilges, N. Pietralla, J. Beller, B. Boisdeffre, M.O. Cernaianu, V. Derya, B. Loher, C. Matei, G. Pascovici, C. Petcu, C. Romig, D. Savran, G. Suliman, E. Udup, V. Werner, Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys. 68, 483–538 (2016)
P.-A. Söderström, E. Açıksöz, D.L. Balabanski, F. Camera, L. Capponi, G. Ciocan, M. Cuciuc, D.M. Filipescu, I. Gheorghe, T. Glodariu, J. Kaur, M. Krzysiek, C. Matei, T. Roman, A. Rotaru, A.B. Şerban, A. State, H. Utsunomiya, V. Vasilca, ELIGANT-GN - ELI gamma above neutron threshold: the gamma-neutron setup. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1027, 166171 (2022). https://doi.org/10.1016/j.nima.2021.166171
M. Heffner, D.M. Asner, R.G. Baker, J. Baker, S. Barrett, C. Brune, J. Bundgaard, E. Burgett, D. Carter, M. Cunningham, J. Deaven, D.L. Duke, U. Greife, S. Grimes, U. Hager, N. Hertel, T. Hill, D. Isenhower, K. Jewell, J. King, J.L. Klay, V. Kleinrath, N. Kornilov, R. Kudo, A.B. Laptev, M. Leonard, W. Loveland, T.N. Massey, C. McGrath, R. Meharchand, L. Montoya, N. Pickle, H. Qu, V. Riot, J. Ruz, S. Sangiorgio, B. Seilhan, S. Sharma, L. Snyder, S. Stave, G. Tatishvili, R.T. Thornton, F. Tovesson, D. Towell, R.S. Towell, S. Watson, B. Wendt, L. Wood, L. Yao, A time projection chamber for high accuracy and precision fission cross-section measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 759, 50–64 (2014). https://doi.org/10.1016/j.nima.2014.05.057
E. Koshchiy, G.V. Rogachev, E. Pollacco, S. Ahn, E. Uberseder, J. Hooker, J. Bishop, E. Aboud, M. Barbui, V.Z. Goldberg, C. Hunt, H. Jayatissa, C. Magana, R. O’Dwyer, B.T. Roeder, A. Saastamoinen, S. Upadhyayula, Texas Active Target (TexAT) detector for experiments with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 957, 163398 (2020). https://doi.org/10.1016/j.nima.2020.163398
J. Bishop, C.E. Parker, G.V. Rogachev, S. Ahn, E. Koshchiy, K. Brandenburg, C.R. Brune, R.J. Charity, J. Derkin, N. Dronchi, G. Hamad, Y. Jones-Alberty, T. Kokalova, T.N. Massey, Z. Meisel, E.V. Ohstrom, S.N. Paneru, E.C. Pollacco, M. Saxena, N. Singh, R. Smith, L.G. Sobotka, D. Soltesz, S.K. Subedi, A.V. Voinov, J. Warren, C. Wheldon, Neutron-upscattering enhancement of the triple-alpha process. Nat. Commun. 13, 2151 (2022). https://doi.org/10.1038/s41467-022-29848-7
K. Greisen, End to the Cosmic–Ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966). https://doi.org/10.1103/PhysRevLett.16.748
G.T. Zatsepin, V.A. Kuz’min, Upper limit of the spectrum of cosmic rays. Soviet J. Exp. Theor. Phys. Lett. 4, 78 (1966)
H. Ohgaki, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, T. Noguchi, T. Tomimasu, Measurement of laser-induced Compton backscattered photons with anti-Compton spectrometer. IEEE Trans. Nucl. Sci. 38(2), 386–392 (1991). https://doi.org/10.1109/23.289330
T. Kii, T. Shima, T. Baba, Y. Nagai, A time projection chamber for the study of nuclear photodisintegration. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equipm. 552(3), 329–343 (2005). https://doi.org/10.1016/j.nima.2005.07.003
T. Shima, Y. Nagai, S. Miyamoto, S. Amano, K. Horikawa, T. Mochizuki, H. Utsunomiya, H. Akimune, Experimental study of nuclear astrophysics with photon beams. AIP Conf. Proc. 1235(1), 315–321 (2010). https://doi.org/10.1063/1.3442615
V.N. Fetisov, A.N. Gorbunov, A.T. Varfolomeev, Nuclear photoeffect on three-particle nuclei. Nucl. Phys. 71(2), 305–342 (1965). https://doi.org/10.1016/0029-5582(65)90720-0
P. Dyer, C.A. Barnes, The \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O reaction and stellar helium burning. Nucl. Phys. A 233(2), 495–520 (1974). https://doi.org/10.1016/0375-9474(74)90470-9
A. Redder, H.W. Becker, C. Rolfs, H.P. Trautvetter, T.R. Donoghue, T.C. Rinckel, J.W. Hammer, K. Langanke, The \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O cross section at stellar energies. Nucl. Phys. A 462(2), 385–412 (1987). https://doi.org/10.1016/0375-9474(87)90555-0
J.M.L. Ouellet, M.N. Butler, H.C. Evans, H.W. Lee, J.R. Leslie, J.D. MacArthur, W. McLatchie, H.-B. Mak, P. Skensved, J.L. Whitton, X. Zhao, T.K. Alexander, \(^{12}\)C \((\alpha ,\gamma )^{16}\)O cross sections at stellar energies. Phys. Rev. C 54, 1982–1998 (1996). https://doi.org/10.1103/PhysRevC.54.1982
R. Kunz, M. Jaeger, A. Mayer, J.W. Hammer, G. Staudt, S. Harissopulos, T. Paradellis, \(^{12}\)C\((\alpha ,\gamma )^{16}\)O: The key reaction in stellar nucleosynthesis. Phys. Rev. Lett. 86, 3244–3247 (2001). https://doi.org/10.1103/PhysRevLett.86.3244
M. Assunção, M. Fey, A. Lefebvre-Schuhl, J. Kiener, V. Tatischeff, J.W. Hammer, C. Beck, C. Boukari-Pelissie, A. Coc, J.J. Correia, S. Courtin, F. Fleurot, E. Galanopoulos, C. Grama, F. Haas, F. Hammache, F. Hannachi, S. Harissopulos, A. Korichi, R. Kunz, D. LeDu, A. Lopez-Martens, D. Malcherek, R. Meunier, T. Paradellis, M. Rousseau, N. Rowley, G. Staudt, S. Szilner, J.P. Thibaud, J.L. Weil, \({E1}\) and \({E2} {S}\) factors of \(^{12}\)C\((\alpha ,{\gamma }_{0})^{16}\)O from \(\gamma \)-ray angular distributions with a 4 \(\pi \)-detector array. Phys. Rev. C 73, 055801 (2006). https://doi.org/10.1103/PhysRevC.73.055801
D. Schürmann, A. Di Leva, L. Gialanella, R. Kunz, F. Strieder, N. De Cesare, M. De Cesare, A. D’Onofrio, K. Fortak, G. Imbriani, D. Rogalla, M. Romano, F. Terrasi, Study of the 6.05 MeV cascade transition in \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O. Phys. Lett. B 703(5), 557–561 (2011). https://doi.org/10.1016/j.physletb.2011.08.061
H. Makii, Y. Nagai, T. Shima, M. Segawa, K. Mishima, H. Ueda, M. Igashira, T. Ohsaki, \({E}1\) and \({E}2\) cross sections of the \(^{12}\)C\((\alpha ,{\gamma }_{0})^{16}\)O reaction using pulsed \(\alpha \) beams. Phys. Rev. C 80, 065802 (2009). https://doi.org/10.1103/PhysRevC.80.065802
R. Plag, R. Reifarth, M. Heil, F. Käppeler, G. Rupp, F. Voss, K. Wisshak, \({}^{12}\)C(\(\alpha,\gamma \))\({}^{16}\)O studied with the Karlsruhe 4\(\pi \) BaF\({}_{2}\) detector. Phys. Rev. C 86, 015805 (2012). https://doi.org/10.1103/PhysRevC.86.015805
F.C. Barker, T. Kajino, The \(^{12}\)C\((\alpha,\gamma )^{16}\)O cross section at low energies. Aust. J. Phys. 44, 369–396 (1991). https://doi.org/10.1071/PH910369
P. Tischhauser, A. Couture, R. Detwiler, J. Görres, C. Ugalde, E. Stech, M. Wiescher, M. Heil, F. Käppeler, R.E. Azuma, L. Buchmann, Measurement of elastic \(^{12}\)C + \(\alpha \) scattering: Details of the experiment, analysis, and discussion of phase shifts. Phys. Rev. C 79, 055803 (2009). https://doi.org/10.1103/PhysRevC.79.055803
L.D. Knutson, Watson’s theorem for low-energy \(p-d\) radiative capture. Phys. Rev. C 59, 2152–2161 (1999). https://doi.org/10.1103/PhysRevC.59.2152
C.R. Brune, Electric-multipole interference effects in the \({}^{12}\)C\((\alpha ,{\gamma }_{0}{)}^{16}\)O reaction. Phys. Rev. C 64, 055803 (2001). https://doi.org/10.1103/PhysRevC.64.055803
M. Gai, Ambiguities in the rate of oxygen formation during stellar helium burning in the \({}^{12}\)C(\(\alpha \),\(\gamma \)) reaction. Phys. Rev. C 88, 062801 (2013). https://doi.org/10.1103/PhysRevC.88.062801
C.R. Brune, D.B. Sayre, Energy deconvolution of cross-section measurements with an application to the \({}^{12}\)C\((\alpha ,\gamma ){}^{16}\)O reaction. Nucl. Instrum. Methods Phys. Res. Secti. A Accelerat. Spectromet. Detect. Assoc. Equipm. 698, 49–59 (2013). https://doi.org/10.1016/j.nima.2012.09.023
R. Plaga, H. Becker, A. Redder, C. Rolfs, H. Trautvetter, K. Langanke, The scattering of alpha particles from \(^{12}\)C and the \(^{12}\)C(\(\alpha \), \(\gamma \))\(^{16}\)O stellar reaction rate. Nucl. Phys. A 465(2), 291–316 (1987). https://doi.org/10.1016/0375-9474(87)90436-2
M. Bruno, I. Massa, A. Uguzzoni, G. Vannini, E. Verondini, A. Vitale, Experimental study of the \(\alpha \)-\(^{12}\)C elastic scattering. R-matrix analysis of the phase shifts and \(^{16}\)O levels. Il. Nuovo Cimento A (1965-1970) 27(1), 1–26 (1975). https://doi.org/10.1007/BF02785263
R. Smith, M. Gai, S. Stern, D. Schweitzer, M. Ahmed, Precision measurements on oxygen formation in stellar helium burning with gamma-ray beams and a Time Projection Chamber. Nat. Commun. 12(1), 1–8 (2021). https://doi.org/10.1038/s41467-021-26179-x
M. Fey, Im Brennpunkt der Nuklearen Astrophysik: Die Reaktion \({}^{12}\)C \((\alpha ,\gamma ){}^{16}\)O. PhD thesis, Universität Stuttgart (2004). https://doi.org/10.18419/opus-4716
R.J. deBoer, J. Görres, M. Wiescher, R.E. Azuma, A. Best, C.R. Brune, C.E. Fields, S. Jones, M. Pignatari, D. Sayre, K. Smith, F.X. Timmes, E. Uberseder, The \(^{12}\)C\((\alpha ,\gamma )^{16}\)O reaction and its implications for stellar helium burning. Rev. Mod. Phys. 89, 035007 (2017). https://doi.org/10.1103/RevModPhys.89.035007
M. Gai, M.W. Ahmed, S.C. Stave, W.R. Zimmerman, A. Breskin, B. Bromberger, R. Chechik, V. Dangendorf, T. Delbar, III, R.H.F., S.S. Henshaw, T.J. Kading, P.P. Martel, J.E.R. McDonald, P.-N. Seo, K. Tittelmeier, H.R. Weller, A.H. Young, An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI\(\gamma \)S. J. Instrument. 5(12), 12004 (2010). https://doi.org/10.1088/1748-0221/5/12/P12004
M. Cwiok, M. Bieda, J. Bihalowicz, W. Dominik, W. Janas, L. Janiak, J. Mańczak, T. Matulewicz, C. Mazzocchi, M. Pfützner et al., A TPC detector for studying photo-nuclear reactions at astrophysical energies with gamma-ray beams at ELI-NP. Acta Phys. Pol. B 49, 509–514 (2018). https://doi.org/10.5506/APhysPolB.49.509
M. Gai, D. Schweitzer, S.R. Stern, A.H. Young, R. Smith, M. Cwiok, J.S. Bihalowicz, H. Czyrkowski, R. Dabrowski, W. Dominik, A. Fijalkowska, Z. Janas, L. Janiak, A. Korgul, T. Matulewicz, C. Mazzocchi, M. Pfützner, M. Zaremba, D. Balabanski, I. Gheorghe, C. Matei, O. Tesileanu, N.V. Zamfir, M.W. Ahmed, S.S. Henshaw, C.R. Howell, J.M. Mueller, L.S. Myers, S. Stave, C. Sun, H.R. Weller, Y.K. Wu, A. Breskin, V. Dangendorf, K. Tittelmeier, M. Freer, Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 954, 161779 (2020). https://doi.org/10.1016/j.nima.2019.01.006
M. Cwiok, W. Dominik, A. Fijalkowska, M. Fila, Z. Janas, A. Kalinowski, K. Kierzkowski, M. Kuich, C. Mazzocchi, W. Okliński, M. Zaremba, M. Gai, D.K. Schweitzer, S.R. Stern, S. Finch, U. Friman-Gayer, S.R. Johnson, T.M. Kowalewski, D.L. Balabanski, C. Matei, A. Rotaru, K.C.Z. Haverson, R. Smith, R.A.M. Allen, M.R. Griffiths, S. Pirrie, P. Santa Rita Alcibia, Studies of photo-nuclear reactions at astrophysical energies with an active-target tpc. EPJ Web Conf. 279, 04002 (2023). https://doi.org/10.1051/epjconf/202327904002
E.C. Pollacco, G.F. Grinyer, F. Abu-Nimeh, T. Ahn, S. Anvar, A. Arokiaraj, Y. Ayyad, H. Baba, M. Babo, P. Baron, D. Bazin, S. Beceiro-Novo, C. Belkhiria, M. Blaizot, B. Blank, J. Bradt, G. Cardella, L. Carpenter, S. Ceruti, E. De Filippo, E. Delagnes, S. De Luca, H. De Witte, F. Druillole, B. Duclos, F. Favela, A. Fritsch, J. Giovinazzo, C. Gueye, T. Isobe, P. Hellmuth, C. Huss, B. Lachacinski, A.T. Laffoley, G. Lebertre, L. Legeard, W.G. Lynch, T. Marchi, L. Martina, C. Maugeais, W. Mittig, L. Nalpas, E.V. Pagano, J. Pancin, O. Poleshchuk, J.L. Pedroza, J. Pibernat, S. Primault, R. Raabe, B. Raine, A. Rebii, M. Renaud, T. Roger, P. Roussel-Chomaz, P. Russotto, G. Saccà , F. Saillant, P. Sizun, D. Suzuki, J.A. Swartz, A. Tizon, A. Trifiró, N. Usher, G. Wittwer, J.C. Yang, Get: a generic electronics system for TPCs and nuclear physics instrumentation. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 887, 81–93 (2018). https://doi.org/10.1016/j.nima.2018.01.020
Preliminary report for experiment HIGS P-14-21/P-18-19. Technical report, Warsaw TPC collaboration (2021)
Acknowledgements
This work is supported by the Romanian Ministry of Research, Innovation and Digitalization, Project no. PN-III-P4-PCE-2021-1024 and PN 23 21 01 06; the U.S. Department of Energy, Office of Science, Nuclear Physics program, Grants no. DE-FG02-94ER40870, DE-FG02-88ER40387, and DE-AC05-00OR22725; the U.S. Department of Energy, National Nuclear Security Agency, Grant no. DE-NA0004065; and the UK STFC, Grant no. ST/V001086/1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Calin Alexandru Ur.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Brune, C.R., Matei, C., Pain, S.D. et al. Photonuclear reactions with charged particles detection for nuclear astrophysics studies. Eur. Phys. J. A 59, 165 (2023). https://doi.org/10.1140/epja/s10050-023-01082-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/s10050-023-01082-9