Skip to main content
Log in

Systematic study of elastic proton-nucleus scattering using relativistic impulse approximation based on covariant density functional theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we apply relativistic impulse approximation (RIA) with a modern density functional PC-PK1 to systematically analyze the available experimental data at \(40 < E_{p} \le 200\) MeV. The theoretical calculations successfully reproduce the numerous experimental data of the elastic-scattering cross sections and analyzing power for both even and odd nuclei in a wide range of mass number (\(12 \le A \le 232\)) and incident energies (\(40 < E_{p} \le 200\) MeV). Moreover, a strong correlation between the root-mean-square (rms) radius of the neutron distribution and the inverse of momentum transfer corresponding to the minimum of the cross section is demonstrated again. We have further confirmed the validity of RIA and the universality of the density functional PC-PK1. This work also provides a good basis to incorporate the ab-initio relativistic chiral force and the medium effect using G-matrix to the present RIA framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data is available upon request from the author.]

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of Interaction Cross Sections and Nuclear Radii in the Light \(p\)-Shell Region. Phys. Rev. Lett. 55, 2676 (1985)

    ADS  Google Scholar 

  2. J. Meng, H. Toki, S.G. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470 (2006)

    ADS  Google Scholar 

  3. A. Ozawa, T. Kobayashi, T. Suzuki et al., New magic number, \(\mathit{N} = 16\), near the neutron drip line. Phys. Rev. Lett. 84, 5493 (2000)

    ADS  Google Scholar 

  4. O. Sorlin, M.G. Porquet, Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602 (2008)

    ADS  Google Scholar 

  5. D. Steppenbeck, S. Takeuchi, N. Aoi et al., Evidence for a new nuclear magic number from the level structure of \(^{54}\)Ca. Nature 502, 207 (2013)

    ADS  Google Scholar 

  6. G. Wallerstein, I. Iben, P. Parker et al., Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995 (1997)

    ADS  Google Scholar 

  7. H. Schatz, Rare isotopes in the cosmos. Phys. Today 61, 40 (2008)

    Google Scholar 

  8. J.J. Cowan, C. Sneden, J.E. Lawler et al., Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021)

    ADS  Google Scholar 

  9. L.X. Chung, O.A. Kiselev, D.T. Khoa et al., Elastic proton scattering at intermediate energies as a probe of the \(^{6,8}{\rm He} \) nuclear matter densities. Phys. Rev. C 92, 034608 (2015)

    ADS  Google Scholar 

  10. T. Kröll, M. Schmid, J.C. Zamora et al., Nuclear reactions in the storage ring ESR with EXL. J. Phys. 724, 012026 (2016)

    Google Scholar 

  11. H. Sakaguchi, J. Zenihiro, Proton elastic scattering from stable and unstable nuclei-extraction of nuclear densities. Prog. Part. Nucl. Phys. 97, 1 (2017)

    ADS  Google Scholar 

  12. S. Chebotaryov, S. Sakaguchi, T. Uesaka et al., Proton elastic scattering at 200 A MeV and high momentum transfers of 1.7-2.7 \(\text{ fm}^{-1}\) as a probe of the nuclear matter density of \(^{6}\)He. Prog. Theor. Exp. Phys. 2018, 053D01 (2018)

    Google Scholar 

  13. K. Yue, J.T. Zhang, X.L. Tu et al., Measurement of Ni58(p, p)Ni58 elastic scattering at low momentum transfer by using the HIRFL-CSR heavy-ion storage ring. Phys. Rev. C 100, 054609 (2019)

    ADS  Google Scholar 

  14. A.V. Dobrovolsky, G.A. Korolev, A.G. Inglessi, I. Dillmann et al., Nuclear-matter distribution in the proton-rich nuclei 7Be and 8B from intermediate energy proton elastic scattering in inverse kinematics. Nucl. Phys. A 989, 40 (2019)

    ADS  Google Scholar 

  15. A.V. Dobrovolsky, G.A. Korolev, S. Tang et al., Nuclear matter distributions in the neutron-rich carbon isotopes \(^{14-17}\)C from intermediate-energy proton elastic scattering in inverse kinematics. Nucl. Phys. A 1008, 122154 (2021)

    Google Scholar 

  16. J.W. Xia, W.L. Zhan, B.W. Wei et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instr. Meth. A 488, 11 (2002)

    ADS  Google Scholar 

  17. K.N. Nasser, B. Alison, NUSTAR: nuclear structure astrophysics and reactions at FAIR. Nucl. Phys. News 28(3), 5 (2018)

    Google Scholar 

  18. H. Sakurai, RIKEN RIBF-present status and future plan. AIP Conf. Proc 1120, 241 (2009)

    ADS  Google Scholar 

  19. F. Capuzzi, C. Giusti, F.D. Pacati, Final-state interaction in electromagnetic response functions. Nucl. Phys. A 524, 681 (1991)

    ADS  Google Scholar 

  20. A. Meucci, F. Capuzzi, C. Giusti et al., Inclusive electron scattering in a relativistic Green’s function approach. Phys. Rev. C 67, 054601 (2003)

    ADS  Google Scholar 

  21. F.G. Perey, Optical-model analysis of proton elastic scattering in the range of 9 to 22 MeV. Phys. Rev. 131, 745 (1963)

    ADS  Google Scholar 

  22. D. Wilmore, P. Hodgson, The calculation of neutron cross-sections from optical potentials. Nucl. Phys. 55, 673 (1964)

    Google Scholar 

  23. J.J.H. Menet, E.E. Gross, J.J. Malanify et al., Total-reaction-cross-section measurements for 30–60-MeV protons and the imaginary optical potential. Phys. Rev. C 4, 1114 (1971)

    ADS  Google Scholar 

  24. F.D. Becchetti, G.W. Greenlees, Nucleon-nucleus optical-model parameters, \(A>40\), \(E<50\) MeV. Phys. Rev. 182, 1190 (1969)

    ADS  Google Scholar 

  25. R.L. Varner, W.J. Thompson, T.L. McAbee et al., A global nucleon optical model potential. Phys. Rep. 201, 57 (1991)

    ADS  Google Scholar 

  26. A. Koning, J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003)

    ADS  Google Scholar 

  27. E.D. Cooper, S. Hama, B.C. Clark et al., Global Dirac phenomenology for proton-nucleus elastic scattering. Phys. Rev. C 47, 297 (1993)

    ADS  Google Scholar 

  28. E.D. Cooper, S. Hama, B.C. Clark, Global Dirac optical potential from helium to lead. Phys. Rev. C 80, 034605 (2009)

    ADS  Google Scholar 

  29. W. Dickhoff, R. Charity, Recent developments for the optical model of nuclei. Prog. Part. Nucl. Phys. 105, 252 (2019)

    ADS  Google Scholar 

  30. J.P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential in finite nuclei from Reid’s hard core interaction. Phys. Rev. C 16, 80 (1977)

    ADS  Google Scholar 

  31. E. Bauge, J.P. Delaroche, M. Girod, Semimicroscopic nucleon-nucleus spherical optical model for nuclei with \(A \gtrsim 40\) at energies up to 200 MeV. Phys. Rev. C 58, 1118 (1998)

    ADS  Google Scholar 

  32. R.R. Xu, Z.Y. Ma, Y. Zhang et al., Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach. Phys. Rev. C 94, 034606 (2016)

    ADS  Google Scholar 

  33. T.R. Whitehead, Y. Lim, J.W. Holt, Proton elastic scattering on calcium isotopes from chiral nuclear optical potentials. Phys. Rev. C 100, 014601 (2019)

    ADS  Google Scholar 

  34. T.R. Whitehead, Y. Lim, J.W. Holt, Global microscopic description of nucleon-nucleus scattering with quantified uncertainties. Phys. Rev. Lett. 127, 182502 (2021)

    ADS  Google Scholar 

  35. G. Blanchon, M. Dupuis, H.F. Arellano et al., Microscopic positive-energy potential based on the Gogny interaction. Phys. Rev. C 91, 014612 (2015)

    ADS  Google Scholar 

  36. M.V. Ivanov, J.R. Vignote et al., Global relativistic folding optical potential and the relativistic Green’s function model. Phys. Rev. C 94, 014608 (2016)

    ADS  Google Scholar 

  37. J. Rotureau, P. Danielewicz, G. Hagen et al., Optical potential from first principles. Phys. Rev. C 95, 024315 (2017)

    ADS  Google Scholar 

  38. J. Rotureau, P. Danielewicz, G. Hagen et al., Microscopic optical potentials for calcium isotopes. Phys. Rev. C 98, 044625 (2018)

    ADS  Google Scholar 

  39. A. Idini, C. Barbieri, P. Navrátil, Ab initio optical potentials and nucleon scattering on medium mass nuclei. Phys. Rev. Lett. 123, 092501 (2019)

    ADS  Google Scholar 

  40. J. Rotureau, Coupled-cluster computations of optical potential for medium-mass nuclei. Front. Phys. 8, 285 (2020)

    Google Scholar 

  41. N.C. Francis, K.M. Watson, The elastic scattering of particles by atomic nuclei. Phys. Rev. 92, 291 (1953)

    ADS  MATH  Google Scholar 

  42. F.A. Brieva, J.R. Rook, Nucleon-nucleus optical model potential: (1). Nuclear matter approach. Nucl. Phys. A 291, 299 (1977)

    ADS  Google Scholar 

  43. F. Brieva, J. Rook, Nucleon-nucleus optical model potential: (II). Finite nuclei. Nucl. Phys. A 291, 317 (1977)

    ADS  Google Scholar 

  44. F. Brieva, J. Rook, Nucleon-nucleus optical model potential: (III). The spin-orbit component. Nucl. Phys. A 297, 206 (1978)

    ADS  Google Scholar 

  45. N. Yamaguchi, S. Nagata, J. Michiyama, Systematic analyses of proton elastic scattering between 65\(<E_p<\)200 MeV with microscopic effective interaction. Prog. Theor. Phys. 76, 1289 (1986)

    ADS  Google Scholar 

  46. K. Amos, P.J. Dortmans, H.V. von Geramb et al., Nucleon-Nucleus Scattering: A Microscopic Nonrelativistic Approach (Springer, 2000), pp.276–536

    Google Scholar 

  47. T. Furumoto, Y. Sakuragi, Y. Yamamoto, New complex \(G\)-matrix interactions derived from two- and three-body forces and application to proton-nucleus elastic scattering. Phys. Rev. C 78, 044610 (2008)

    ADS  Google Scholar 

  48. K. Minomo, T. Sumi, M. Kimura et al., Deformation effect on total reaction cross sections for neutron-rich ne isotopes. Phys. Rev. C 84, 034602 (2011)

    ADS  Google Scholar 

  49. K. Minomo, T. Sumi, M. Kimura et al., Determination of the structure of \(^{31}{\rm Ne}\) by a fully microscopic framework. Phys. Rev. Lett. 108, 052503 (2012)

    ADS  Google Scholar 

  50. M. Toyokawa, K. Minomo, M. Yahiro, Mass-number and isotope dependence of local microscopic optical potentials for polarized proton scattering. Phys. Rev. C 88, 054602 (2013)

    ADS  Google Scholar 

  51. K. Egashira, K. Minomo, M. Toyokawa et al., Microscopic optical potentials for \(^{4}{\rm He}\) scattering. Phys. Rev. C 89, 064611 (2014)

    ADS  Google Scholar 

  52. M. Toyokawa, M. Yahiro, T. Matsumoto et al., Microscopic calculations based on chiral two- and three-nucleon forces for proton- and \(^{4}{\rm He}\)-nucleus scattering. Phys. Rev. C 92, 024618 (2015)

    ADS  Google Scholar 

  53. T. Furumoto, K. Tsubakihara, S. Ebata et al., Microscopic global optical potential for nucleon-nucleus systems in the energy range 50–400 MeV. Phys. Rev. C 99, 034605 (2019)

    ADS  Google Scholar 

  54. M. Matsuzaki, S. Tagami, M. Yahiro, Neutron skin thickness of \(^{208}\)Pb,\(^{116,120,124}\)Sn and \(^{40}\)Ca determined from reaction cross sections of \(^{4}\)He scattering. Phys. Rev. C 104, 054613 (2021)

    ADS  Google Scholar 

  55. S. Tagami, T. Wakasa, J. Matsui et al., Neutron skin thickness of \(^{208}\)Pb determined from the reaction cross section for proton scattering. Phys. Rev. C 104, 024606 (2021)

    ADS  Google Scholar 

  56. S. Tagami, T. Wakasa, M. Takechi et al., Neutron skin in \(^{48}\)Ca determined from p+\(^{48}\)Ca and \(^{48}\)Ca+\(^{12}\)C scattering. Results Phys. 33, 105155 (2022)

    Google Scholar 

  57. M. Vorabbi, P. Finelli, C. Giusti, Theoretical optical potential derived from nucleon-nucleon chiral potentials. Phys. Rev. C 93, 034619 (2016)

    ADS  Google Scholar 

  58. M. Vorabbi, P. Finelli, C. Giusti, Optical potentials derived from nucleon-nucleon chiral potentials at \({\rm N}^{4}{\rm LO}\). Phys. Rev. C 96, 044001 (2017)

    ADS  Google Scholar 

  59. M. Vorabbi, P. Finelli, C. Giusti, Proton-nucleus elastic scattering: comparison between phenomenological and microscopic optical potentials. Phys. Rev. C 98, 064602 (2018)

    ADS  Google Scholar 

  60. M. Gennari, M. Vorabbi, A. Calci et al., Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities. Phys. Rev. C 97, 034619 (2018)

    ADS  Google Scholar 

  61. M. Vorabbi, M. Gennari, P. Finelli et al., Elastic antiproton-nucleus scattering from chiral forces. Phys. Rev. Lett. 124, 162501 (2020)

    ADS  Google Scholar 

  62. M. Burrows, C. Elster, S.P. Weppner et al., Ab initio folding potentials for nucleon-nucleus scattering based on no-core shell-model one-body densities. Phys. Rev. C 99, 044603 (2019)

    ADS  Google Scholar 

  63. M. Burrows, R.B. Baker, C. Elster et al., Ab initio leading order effective potentials for elastic nucleon-nucleus scattering. Phys. Rev. C 102, 034606 (2020)

    ADS  Google Scholar 

  64. J.A. McNeil, J.R. Shepard, S.J. Wallace, Impulse-approximation Dirac optical potential. Phys. Rev. Lett. 50, 1439 (1983)

    ADS  Google Scholar 

  65. J.A. McNeil, L. Ray, S.J. Wallace, Impulse approximation \({\rm NN}\) amplitudes for proton-nucleus interactions. Phys. Rev. C 27, 2123 (1983)

    ADS  Google Scholar 

  66. B.C. Clark, S. Hama, R.L. Mercer et al., Dirac-equation impulse approximation for intermediate-energy nucleon- nucleus scattering. Phys. Rev. Lett. 50, 1644 (1983)

    ADS  Google Scholar 

  67. B.C. Clark, S. Hama, R.L. Mercer et al., Energy dependence of the relativistic impulse approximation for proton-nucleus elastic scattering. Phys. Rev. C 28, 1421 (1983)

    ADS  Google Scholar 

  68. J.R. Shepard, J.A. McNeil, S.J. Wallace, Relativistic impulse approximation for \(p\)-nucleus elastic scattering. Phys. Rev. Lett. 50, 1443 (1983)

    ADS  Google Scholar 

  69. J.A. Tjon, S.J. Wallace, Generalized impulse approximation for relativistic proton scattering. Phys. Rev. C 36, 1085 (1987)

    ADS  Google Scholar 

  70. D.P. Murdock, C.J. Horowitz, Microscopic relativistic description of proton-nucleus scattering. Phys. Rev. C 35, 1442 (1987)

    ADS  Google Scholar 

  71. K. Kaki, Relativistic impulse approximation analysis of elastic proton scattering from He isotopes. Phys. Rev. C 89, 014620 (2014)

    ADS  Google Scholar 

  72. W.A. Yahya, B.I.S. van der Ventel, B.C.K. Kaya et al., Calculation of a complete set of spin observables for proton elastic scattering from stable and unstable nuclei. Phys. Rev. C 98, 014620 (2018)

    ADS  Google Scholar 

  73. S.N. Wei, R.Y. Yang, J. Ye et al., Symmetry potentials and in-medium nucleon-nucleon cross sections within the Nambu-Jona-Lasinio model in relativistic impulse approximation. Phys. Rev. C 103, 064604 (2021)

    ADS  Google Scholar 

  74. N. Li, S.N. Wei, W.Z. Jiang, Nuclear potentials relevant to the symmetry energy in chiral models. Symmetry 14, 474 (2022)

    ADS  Google Scholar 

  75. Y. Kanada-En’yo, Neutron \(3{s}_{1/2}\) occupation change across the stable tin isotopes investigated using isotopic analysis of proton scattering at 295 MeV. Phys. Rev. C 106, 034321 (2022)

    ADS  Google Scholar 

  76. H. Takeda, Modification of nucleon-nucleon interactions in nuclear medium and neutron densities extracted via proton elastic scattering at intermediate energies. Mem. Fac. Sci. Kyoto Univ. Ser. Phys 44, 1 (2003)

    Google Scholar 

  77. B.C. Clark, L.J. Kerr, S. Hama, Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering. Phys. Rev. C 67, 054605 (2003)

    ADS  Google Scholar 

  78. K. Kaki, H. Toki, I. Tanihata, Neutron distribution of \(^{208}\)Pb in the relativistic impulse approximation of proton-elastic scattering. Nucl. Phys. A 724, 99 (2003)

    ADS  Google Scholar 

  79. J. Zenihiro, H. Sakaguchi, T. Murakami et al., Neutron density distributions of \(^{204,206,208}\)Pb deduced via proton elastic scattering at \(E_p\)=295MeV. Phys. Rev. C 82, 044611 (2010)

    ADS  Google Scholar 

  80. K. Kaki, Neutron density distributions analyzed in terms of relativistic impulse approximation for nickel isotopes. Int. J. Mod. Phys. E 24, 1550015 (2015)

    ADS  Google Scholar 

  81. K. Kaki, Reaction cross sections of proton scattering from carbon isotopes (A=8-22) by means of the relativistic impulse approximation. Prog. Theor. Exp. Phys. 2017, 093D01 (2017)

    Google Scholar 

  82. Z.P. Li, G.C. Hillhouse, J. Meng, Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV. Phys. Rev. C 78, 014603 (2008)

    ADS  Google Scholar 

  83. Z.P. Li, G.C. Hillhouse, J. Meng, Energy-dependent Lorentz covariant parameterization of the \(\mathit{NN}\) interaction between 50 and 200 MeV. Phys. Rev. C 77, 014001 (2008)

    ADS  Google Scholar 

  84. P.W. Zhao, Z.P. Li, J.M. Yao et al., New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82, 054319 (2010)

    ADS  Google Scholar 

  85. X.L. Ren, K.W. Li, L.S. Geng et al., Leading order relativistic chiral nucleon-nucleon interaction. Chin. Phys. C 42, 014103 (2018)

    ADS  Google Scholar 

  86. X.L. Ren, C.X. Wang, K.W. Li et al., Relativistic chiral description of the \(^1S_0\) nucleon-nucleon scattering. Chin. Phys. Lett. 38, 062101 (2021)

    ADS  Google Scholar 

  87. J.X. Lu, C.X. Wang, Y. Xiao et al., Accurate relativistic chiral nucleon-nucleon interaction up to next-to-next-to-leading order. Phys. Rev. Lett. 128, 142002 (2022)

    ADS  Google Scholar 

  88. C.J. Horowitz, D.P. Murdock, B.D. Serot, The Relativistic Impulse Approximation (Springer, Berlin, 1991), pp.129–151

    Google Scholar 

  89. W.G. Love, M.A. Franey, Effective nucleon-nucleon interaction for scattering at intermediate energies. Phys. Rev. C 24, 1073 (1981)

    ADS  Google Scholar 

  90. M.A. Franey, W.G. Love, Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. Phys. Rev. C 31, 488 (1985)

    ADS  Google Scholar 

  91. C.J. Horowitz, Relativistic Love-Franey model: covariant representation of the NN interaction for N-nucleus scattering. Phys. Rev. C 31, 1340 (1985)

    ADS  Google Scholar 

  92. M. Fierz, Zur fermischen theorie des \(\beta \)-zerfalls. Zeitschrift für Physik 104, 553 (1937)

    ADS  MATH  Google Scholar 

  93. J. Meng, P. Ring, Relativistic Hartree-Bogoliubov description of the neutron Halo in \({}^{11}\)Li. Phys. Rev. Lett. 77, 3963 (1996)

    ADS  Google Scholar 

  94. J. Meng, Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl. Phys. A 635, 3 (1998)

    ADS  Google Scholar 

  95. J. Meng, P. Ring, Giant Halo at the neutron drip line. Phys. Rev. Lett. 80, 460 (1998)

    ADS  Google Scholar 

  96. H.Z. Liang, J. Meng, S.G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep. 570, 1 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  97. J. Meng, S.G. Zhou, Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum. J. Phys. G 42, 093101 (2015)

    ADS  Google Scholar 

  98. Y. Lim, X.W. Xia, Y. Kim, Proton radioactivity in relativistic continuum Hartree-Bogoliubov theory. Phys. Rev. C 93, 014314 (2016)

    ADS  Google Scholar 

  99. X.W. Xia, Y. Lim, P.W. Zhao et al., The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. At. Data Nucl. Data Tables 121–122, 1 (2018)

    ADS  Google Scholar 

  100. W.H. Long, J. Meng, V.G. Nguyen et al., New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys. Rev. C 69, 034319 (2004)

    ADS  Google Scholar 

  101. G.A. Lalazissis, T. Nikšić, D. Vretenar et al., New relativistic mean-field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C 71, 024312 (2005)

    ADS  Google Scholar 

  102. T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  103. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 2004)

    Google Scholar 

  104. M. Anguiano, J. Egido, L. Robledo, Particle number projection with effective forces. Nucl. Phys. A 696, 467 (2001)

    ADS  MATH  Google Scholar 

  105. J.M. Yao, K. Hagino, Z.P. Li et al., Microscopic benchmark study of triaxiality in low-lying states of \({}^{76}{\rm Kr}\). Phys. Rev. C 89, 054306 (2014)

    ADS  Google Scholar 

  106. M. Catacora-Rios, G.B. King, A.E. Lovell et al., Statistical tools for a better optical model. Phys. Rev. C 104, 064611 (2021)

    ADS  Google Scholar 

  107. Ö. Sürer, F.M. Nunes, M. Plumlee et al., Uncertainty quantification in breakup reactions. Phys. Rev. C 106, 024607 (2022)

    ADS  Google Scholar 

  108. C. Drischler, J.A. Melendez, R.J. Furnstahl et al., BUQEYE guide to projection-based emulators in nuclear physics. Front. Phys. 10, 1092931 (2023)

    Google Scholar 

  109. C. Hebborn, F.M. Nunes, G. Potel et al., Optical potentials for the rare-isotope beam era. J. Phys. G 50, 060501 (2023)

    ADS  Google Scholar 

  110. V.V. Zerkin. Experimental Nuclear Reaction Data (EXFOR) (2023). https://www-nds.iaea.org/exfor/

  111. K.Q. Lu, Z.X. Li, Z.P. Li et al., Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method. Phys. Rev. C 91, 027304 (2015)

    ADS  Google Scholar 

  112. Y.L. Yang, Y.K. Wang, P.W. Zhao et al., Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory. Phys. Rev. C 104, 054312 (2021)

    ADS  Google Scholar 

  113. K.Y. Zhang, X.T. He, J. Meng et al., Predictive power for superheavy nuclear mass and possible stability beyond the neutron drip line in deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 104, L021301 (2021)

    ADS  Google Scholar 

  114. K.Y. Zhang, M.K. Cheoun, Y.B. Choi et al., Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, I: Even-even nuclei. At. Data Nucl. Data Tables 144, 101488 (2022)

    Google Scholar 

  115. S. Quan, W.P. Liu, Z.P. Li et al., Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei. Phys. Rev. C 96, 054309 (2017)

    ADS  Google Scholar 

  116. D.L. Cao, Z.Z. Ren, T.K. Dong, A theoretical study of halo structure using elastic proton-nucleus scattering. Chin. Phys. C 37, 034103 (2013)

    ADS  Google Scholar 

  117. A.D. Pietro, Phenomenological optical potentials. Eur. Phys. J. Plus 133, 404 (2018)

    Google Scholar 

  118. A. Kohama, K. Iida, K. Oyamatsu, Nuclear radius deduced from proton diffraction by a black nucleus. Phys. Rev. C 69, 064316 (2004)

    ADS  Google Scholar 

  119. J.M. Yao, H. Mei, Z.P. Li, Does a proton “bubble’’ structure exist in the low-lying states of 34Si? Phys. Lett. B 723, 459 (2013)

    ADS  Google Scholar 

  120. X.Y. Wu, X.R. Zhou, Global performance of multireference density functional theory for low-lying states in \(sd\)-shell nuclei. Phys. Rev. C 92, 054321 (2015)

    ADS  Google Scholar 

  121. Y.L. Yang, P.W. Zhao. Triaxial relativistic Hartree-Bogoliubov results with the PC-PK1 density functional (2023). http://nuclearmap.jcnp.org/

  122. J.P. Delaroche, M. Girod, J. Libert et al., Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81, 014303 (2010)

    ADS  Google Scholar 

  123. T. Tamura, Analyses of the Scattering of Nuclear Particles by Collective Nuclei in Terms of the Coupled-Channel Calculation. Rev. Mod. Phys. 37, 679 (1965)

    ADS  MathSciNet  Google Scholar 

  124. K. Kumar, C. Lagrange, M. Girod et al., Extended coupled channel method for baryon scattering based on the dynamics of the Bohr Hamiltonian deduced from a microscopic nucleon-nucleon Hamiltonian. Phys. Rev. C 31, 762 (1985)

  125. E.S. Soukhovitskiĩ, R. Capote, J.M. Quesada et al., Nucleon scattering on actinides using a dispersive optical model with extended couplings. Phys. Rev. C 94, 064605 (2016)

    ADS  Google Scholar 

  126. S.H. Shen, H.Z. Liang, J. Meng et al., Fully self-consistent relativistic Brueckner-Hartree-Fock theory for finite nuclei. Phys. Rev. C 96, 014316 (2017)

    ADS  Google Scholar 

  127. S.B. Wang, Q. Zhao, P. Ring, J. Meng, Nuclear matter in relativistic Brueckner-Hartree-Fock theory with Bonn potential in the full Dirac space. Phys. Rev. C 103, 054319 (2021)

    ADS  Google Scholar 

  128. H. Kamitsubo, H. Ohnuma, K. Ôno et al., Elastic scattering of 55 MeV protons from heavy nuclei. J. Phys. Soc. Jpn. 22, 19 (1967)

    ADS  Google Scholar 

  129. M. Vorabbi, M. Gennari, P. Finelli et al., Elastic proton scattering off nonzero spin nuclei. Phys. Rev. C 105, 014621 (2022)

    ADS  Google Scholar 

  130. J. Piekarewicz, S. Weppner, Insensitivity of the elastic proton-nucleus reaction to the neutron radius of \(^{208}\)Pb. Nucl. Phys. A 778, 10 (2006)

    ADS  Google Scholar 

  131. M. Thiel, C. Sfienti, J. Piekarewicz et al., Neutron skins of atomic nuclei: per aspera ad astra. J. Phys. G 46, 093003 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sibo Wang for valuable discussions and communications. This work is supported by the National Natural Science Foundation of China (Grants No. 11875225, No. 12022504, No. 12121005 and No. 11935003), by the Fundamental Research Funds for the Central Universities, and by the Fok Ying-Tung Education Foundation, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Li.

Additional information

Communicated by Dario Vretenar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Tu, X.L., Zhang, J.T. et al. Systematic study of elastic proton-nucleus scattering using relativistic impulse approximation based on covariant density functional theory. Eur. Phys. J. A 59, 160 (2023). https://doi.org/10.1140/epja/s10050-023-01072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01072-x

Navigation