Skip to main content
Log in

Hot and highly magnetized neutron star matter properties with Skyrme interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the properties of hot and dense neutron star matter under the presence of strong magnetic fields using two Skyrme interactions, namely the LNS and the BSk21 ones. Asking for \(\beta \)–stability and charge neutrality, we construct the equation of state of the system and analyze its composition for a range of densities, temperatures and magnetic field intensities of interest for the study of supernova and proto-neutron star matter, with a particular interest on the degree of spin-polarization of the different components. The results show that system configurations with larger fractions of spin up protons and spin down neutrons and electrons are energetically favored over those with larger fractions of spin down protons and spin up neutrons and electrons. The effective mass of neutrons and protons is found to be in general larger for the more abundant of their spin projection component, respectively, spin down neutrons and spin up protons. The effect of the magnetic field on the Helmhotz total free energy density, pressure and isothermal compressibility of the system is almost negligible for all the values of the magnetic field considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. Authors’ comment: This is a theoretical study and there are no data associated to it.]

References

  1. L. Rezzolla, P. Pizzochero, I, Jones, N. Rea, and I. Vidaña Eds. The Physics and Astrophysics of Neutron Stars, Astrophysics and Space Science Library 457, Springer Nature Switzerland AG 2018

  2. S.L. Shapiro, S.A. Teukolsky, Black Holes (The Physics of Compact Stars (Wiley and Sons, White Dwarfs and Neutron Stars, 1983)

    Google Scholar 

  3. W.H.G. Lewin, J. van Paradijs, E.P.J. van den Heuvel, X-ray binaries (Cambridge University, Cambridge, 1995)

    Google Scholar 

  4. A.G. Lyne, F. Graham-Smith, Pulsar Astron. (Cambridge University, Cambridge, 1998)

    Google Scholar 

  5. R.C. Duncan, C. Thompson, Astrophys. J. Lett. 392, L9 (1992)

    ADS  Google Scholar 

  6. B. Paczyński, Acta Astron. 42, 145 (1992)

    ADS  Google Scholar 

  7. C. Thompson, R.C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995)

    ADS  Google Scholar 

  8. C. Thompson, R.C. Duncan, Astrophys. J. 473, 322 (1996)

    ADS  Google Scholar 

  9. S. Chandrasekhar, E. Fermi, Astrophys. J. 118, 116 (1953)

    ADS  MathSciNet  Google Scholar 

  10. T. Tatsumi, T. Maruyama, E. Nakano, K. Nawa, Nucl. Phys. A 774, 827 (2006)

    ADS  Google Scholar 

  11. C. Thompson, R.C. Duncan, Astrophys. J. 408, 194 (1993)

    ADS  Google Scholar 

  12. D.H. Brownell, J. Callaway, Nuovo Cimento B 60, 169 (1969)

    ADS  Google Scholar 

  13. M.J. Rice, Phys. Lett. A 29, 637 (1969)

    ADS  Google Scholar 

  14. J.W. Clark, N.C. Chao, Lett. Nuovo Cimento 2, 185 (1969)

    ADS  Google Scholar 

  15. S. D. Silvertein, Phys. Rev. Lett. 23, 139

  16. J.W. Clark, Phys. Rev. Lett. 23, 1463 (1969)

    ADS  Google Scholar 

  17. E. Østgaard, Nucl. Phys. A 154, 202 (1970)

    ADS  Google Scholar 

  18. J.M. Pearson, G. Saunier, Phys. Rev. Lett. 24, 325 (1970)

    ADS  Google Scholar 

  19. V.R. Pandharipande, V.K. Garde, J.K. Srivastava, Phys. Lett. B 38, 485 (1972)

    ADS  Google Scholar 

  20. S.O. Bäckman, C.G. Källman, Phys. Lett. B 43, 263 (1973)

    ADS  Google Scholar 

  21. P. Haensel, Phys. Rev. C 11, 1822 (1975)

    ADS  Google Scholar 

  22. A.D. Jackson, E. Krotscheck, D.E. Meltzer, A. Smith, Nucl. Phys. A 386, 125 (1982)

    ADS  Google Scholar 

  23. A. Vidaurre, J. Navarro, J. Bernabeu, Astron. Astrophys. 135, 361 (1984)

    ADS  Google Scholar 

  24. M. Kutschera, W. Wójcik, Phys. Lett. B 223, 11 (1989)

    ADS  Google Scholar 

  25. S. Marcos, R. Niembro, M.L. Quelle, J. Navarro, Phys. Lett. B 271, 277 (1991)

    ADS  Google Scholar 

  26. M. Kutschera, W. Wójcik, Phys. Lett. B 325, 217 (1994)

    Google Scholar 

  27. P. Bernardos, S. Marcos, R. Niembro, M.L. Quelle, Phys. Lett. B 356, 175 (1996)

    ADS  Google Scholar 

  28. S. Fantomni, A. Sarsa, K.E. Schmidt, Phys. Rev. Lett. 87, 181101 (2001)

    ADS  Google Scholar 

  29. I. Vidaña, A. Polls, A. Ramos, Phys. Rev. C 65, 035804 (2002)

    ADS  Google Scholar 

  30. I. Vidaña, I. Bombaci, Phys. Rev. C 66, 045801 (2002)

    ADS  Google Scholar 

  31. A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 71, 055802 (2005)

    ADS  Google Scholar 

  32. D. López-Val, A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 74, 068801 (2006)

    ADS  Google Scholar 

  33. I. Bombaci, A. Polls, A. Ramos, A. Rios, I. Vidaña, Phys. Lett. B 632, 638 (2006)

    ADS  Google Scholar 

  34. F. Sammarruca, P.G. Krastev, Phys. Rev. C 75, 034315 (2007)

    ADS  Google Scholar 

  35. M.A. Pérez-García, J. Navarro, A. Polls, Phys. Rev. C 80, 025802 (2009)

    ADS  Google Scholar 

  36. M.A. Pérez-García, Phys. Rev. C 80, 045804 (2009)

    ADS  Google Scholar 

  37. M. Bigdeli, Phys. Rev. C 82, 054312 (2010)

    ADS  Google Scholar 

  38. F. Sammarruca, Phys. Rev. C 83, 064304 (2011)

    ADS  Google Scholar 

  39. V.R. Khalilov, Phys. Rev. D 65, 056001 (2002)

    ADS  Google Scholar 

  40. M.A. Pérez-García, Phys. Rev. C 77, 065806 (2008)

    ADS  Google Scholar 

  41. R. Aguirre, Phys. Rev. C 83, 055804 (2011)

    ADS  Google Scholar 

  42. M.A. Pérez-García, C. Providência, A. Rabhi, Phys. Rev. C 84, 045803 (2011)

    ADS  Google Scholar 

  43. R. Aguirre, E. Bauer, Phys. Lett. B 721, 136 (2013)

    ADS  Google Scholar 

  44. R. Aguirre, E. Bauer, I. Vidaña, Phys. Rev. C 89, 035809 (2014)

    ADS  Google Scholar 

  45. R. Aguirre, E. Bauer, J. Phys. G: Nucl. Part. Phys. 42, 105101 (2015)

    Google Scholar 

  46. R.D. Blandford, L. Hernquist, J. Phys. C: Solid State Phys. 15, 6233 (1982)

    ADS  Google Scholar 

  47. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    ADS  Google Scholar 

  48. J. Dong, W. Zuo, J. Gu, Phys. Rev. D 87, 103010 (2013)

    ADS  Google Scholar 

  49. A. Rabhi, M.A. Pérez-García, C. Providência, I. Vidaña, Phys. Rev. C 91, 045803 (2015)

    ADS  Google Scholar 

  50. J. Fang, H. Pais, S. Avancini, C. Providência, Phys. Rev. C 94, 062801(R) (2016)

    ADS  Google Scholar 

  51. J. Fang, H. Pais, S. Pratapsi, S. Avancini, J. Li, C. Providência, Phys. Rev. C 95, 045802 (2017)

    ADS  Google Scholar 

  52. J. Fang, H. Pais, S. Pratapsi, C. Providência, Phys. Rev. C 95, 062801(R) (2017)

  53. S. Avancini, B.P. Bertolino, A. Rabhi, J. Fang, H. Pais, C. Providência, Phys. Rev. C 98, 025805 (2018)

    ADS  Google Scholar 

  54. I. Sengo, H. Pais, B. Franzon, C. Providência, Phys. Rev. D 102, 063013 (2020)

    ADS  MathSciNet  Google Scholar 

  55. H. Pais, B. Bertolino, J. Fang, X. Wang, C. Providência, Eur. Phys. J. A 57, 193 (2021)

    ADS  Google Scholar 

  56. M. Ferreira, A. Rabhi, C. Procidência, Eur. Phys. J. A 57, 263 (2021)

    Google Scholar 

  57. J. Torres-Patiño, E. Bauer, I. Vidaña, Phys. Rev. C 99, 045808 (2019)

  58. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)

    ADS  Google Scholar 

  59. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)

    ADS  Google Scholar 

  60. B.P. Abbot et al., Phys. Rev. Lett. 119, 161101 (2017)

    ADS  Google Scholar 

  61. T.E. Riley et al., Astrophys. J. Lett. 887, L21 (2019)

    ADS  Google Scholar 

  62. M.C. Miller et al., Astropys. J. Lett. 887, L24 (2019)

    ADS  Google Scholar 

  63. A. F. Fantina, N. Chamel. J. M. Pearson, and S. Goriely, Astron. and Astrophys. 559, A128 (2013)

  64. E. Bauer, J. Torres-Patiño, Phys. Rev. C 101, 065806 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

I.V. thanks the support of the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 824093. OGB is a member of the Carrera del Investigador Científico of the Comisión de Investigaciones Científicas of the Provincia de Buenos Aires (CICPBA), Argentina. EB is a member of the Carrera del Investigador Científico of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Vidaña.

Additional information

Communicated by Jérôme Margueron.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenuto, O.G., Bauer, E. & Vidaña, I. Hot and highly magnetized neutron star matter properties with Skyrme interactions. Eur. Phys. J. A 59, 159 (2023). https://doi.org/10.1140/epja/s10050-023-01070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01070-z

Navigation