Skip to main content

Advancements of \(\gamma \)-ray spectroscopy of isotopically identified fission fragments with AGATA and VAMOS++

Abstract

\(\gamma \)-ray spectroscopy of fission fragments is a powerful method for studies of nuclear structure properties. Recent results on the spectroscopy of fission fragments, using the combination of the AGATA \(\gamma \)-ray tracking array and the VAMOS++ large acceptance magnetic spectrometer at GANIL, are reported. A comparison of the performance of the large germanium detector arrays EXOGAM and AGATA illustrates the advances in \(\gamma \)-ray spectroscopy of fission fragments. Selected results are highlighted for prompt \(\gamma \)-ray spectroscopy studies, measurements of short lifetimes of excited states with the Recoil Distance Doppler-Shift method, using both AGATA and VAMOS++ and prompt-delayed \(\gamma \)-ray spectroscopy studies using AGATA, VAMOS++ and EXOGAM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data generated in this study are contained in the publication.]

Notes

  1. \(\upsilon _\nu \) stands for neutron seniority, which refers to the number of unpaired neutrons.

References

  1. J. Hamilton et al., Prog. Part. Nucl. Phys. 35, 635 (1995)

    ADS  Google Scholar 

  2. I. Ahmad, W.R. Phillips, Rep. Prog. Phys. 58, 1415 (1995)

    ADS  Google Scholar 

  3. A. Navin et al., Phys. Lett. B 728, 136 (2014)

    ADS  Google Scholar 

  4. A. Navin, M. Rejmund, in McGRAW-HILL Yearbook of Science and Technology (2014), p. 137

  5. S. Leoni, C. Michelagnoli, J.N. Wilson, La Rivista del Nuovo Cimento 45, 461 (2022)

    ADS  Google Scholar 

  6. V. Metag, D. Habs, H. Specht, Phys. Rep. 65, 1 (1980)

    ADS  Google Scholar 

  7. I. Lee, \(4\pi \) high resolution gamma ray spectroscopy and nuclear structure. Prog. Part. Nucl. Phys. 38, 65 (1997)

    ADS  Google Scholar 

  8. W. Urban et al., Z. Phys. A 358, 145 (1997)

    ADS  Google Scholar 

  9. W. Korten, S. Lunardi, Achievements with the Euroball spectrometer (1997–2003) (2003)

  10. M. Jentschel et al., J. Instrum. 12, P11003 (2017)

    Google Scholar 

  11. M. Lebois et al., Nucl. Instrum. Methods Phys. Res. A 960, 163580 (2020)

    Google Scholar 

  12. M. Rejmund et al., Nucl. Instrum. Methods Phys. Res. A 646, 184 (2011)

    ADS  Google Scholar 

  13. G. Montagnoli et al., Nucl. Instrum. Methods Phys. Res. A 547, 455 (2005)

    ADS  Google Scholar 

  14. M. Rejmund et al., Phys. Lett. B 753, 86 (2016)

    ADS  Google Scholar 

  15. M. Rejmund et al., Phys. Rev. C 93, 024312 (2016)

    ADS  Google Scholar 

  16. J. Simpson et al., Acta Phys. Hung. NS-H 11, 159 (2000)

    Google Scholar 

  17. Y. Kim et al., Phys. Lett. B 772, 403 (2017)

    ADS  Google Scholar 

  18. A. Navin et al., Phys. Lett. B 767, 480 (2017)

    ADS  Google Scholar 

  19. E.H. Wang et al., Phys. Rev. C 103, 034301 (2021)

    ADS  Google Scholar 

  20. E.H. Wang et al., Phys. Rev. C 92, 034317 (2015)

    ADS  Google Scholar 

  21. S. Bhattacharyya et al., Phys. Rev. C 98, 044316 (2018)

    ADS  Google Scholar 

  22. A. Dewald, O. Möller, P. Petkov, Prog. Part. Nucl. Phys. 67, 786 (2012)

    ADS  Google Scholar 

  23. P. Singh et al., Phys. Rev. Lett. 121, 192501 (2018)

    ADS  Google Scholar 

  24. T.W. Hagen et al., Phys. Rev. C 95, 034302 (2017)

    ADS  Google Scholar 

  25. T.W. Hagen et al., Eur. Phys. J. A 54, 50 (2018)

    ADS  Google Scholar 

  26. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    ADS  Google Scholar 

  27. S. Paschalis et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)

    ADS  Google Scholar 

  28. C. Stahl et al., Comput. Phys. Commun. 214, 174 (2017)

    ADS  Google Scholar 

  29. E. Clément et al., Nucl. Instrum. Methods Phys. Res. A 855, 1 (2017)

    ADS  Google Scholar 

  30. S. Biswas et al., Phys. Rev. C 99, 064302 (2019)

    ADS  Google Scholar 

  31. S. Biswas et al., Phys. Rev. C 102, 014326 (2020)

    ADS  Google Scholar 

  32. R. Banik et al., Phys. Rev. C 102, 044329 (2020)

    ADS  Google Scholar 

  33. J. Dudouet et al., Phys. Rev. Lett. 118, 162501 (2017)

    ADS  Google Scholar 

  34. J. Dudouet et al., Phys. Rev. C 100, 011301 (2019)

    ADS  Google Scholar 

  35. K. Rezynkina et al., Phys. Rev. C 106, 014320 (2022)

    ADS  Google Scholar 

  36. C. Delafosse et al., Phys. Rev. Lett. 121, 192502 (2018)

    ADS  Google Scholar 

  37. C. Delafosse et al., Acta Phys. Pol. B 50, 633 (2019)

    ADS  Google Scholar 

  38. S. Ansari, Shape evolution in neutron-rich Zr, Mo and Ru isotopes around mass A = 100. Theses, Université Paris Saclay (COmUE) (2019)

  39. M. Vandebrouck et al., Nucl. Instrum. Methods Phys. Res. A 812, 112 (2016)

    ADS  Google Scholar 

  40. J. Ljungvall et al., Nucl. Instrum. Methods Phys. Res. A 955, 163297 (2020)

    Google Scholar 

  41. F. Recchia, In-beam test and imaging capabilities of the AGATA prototype detector. Ph.D. thesis, Universita Degli Studi Di Padova (2008)

  42. F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 555 (2009)

    ADS  Google Scholar 

  43. P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)

  44. S. Bhattacharyya et al., Phys. Rev. Lett. 101, 032501 (2008)

    ADS  Google Scholar 

  45. R. Casten, Nuclear Structure from a Simple Perspective (Oxford Science Publication, New York, 1990)

    Google Scholar 

  46. F. Flavigny et al., Phys. Rev. Lett. 118, 242501 (2017)

    ADS  Google Scholar 

  47. M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012)

    ADS  Google Scholar 

  48. R.-B. Gerst et al., Phys. Rev. C 105, 024302 (2022)

    ADS  Google Scholar 

  49. F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)

    Google Scholar 

  50. S. Basu, E.M. Cutchan, Nucl. Data Sheets 165, 1 (2020)

    ADS  Google Scholar 

  51. B. Elman et al., Phys. Rev. C 96, 044332 (2017)

    ADS  Google Scholar 

  52. K. Sieja et al., Phys. Rev. C 88, 034327 (2013)

    ADS  Google Scholar 

  53. J. Litzinger et al., Phys. Rev. C 92, 064322 (2015)

    ADS  Google Scholar 

  54. Y. Kim et al., Eur. Phys. J. A 53, 162 (2017)

    ADS  Google Scholar 

  55. A. Wolf, E. Cheifetz, Phys. Rev. Lett. 36, 1072 (1976)

    ADS  Google Scholar 

  56. B. Fogelberg et al., Nucl. Phys. A 451, 104 (1986)

    ADS  Google Scholar 

  57. A. Astier et al., Phys. Rev. C 85, 054316 (2012)

    ADS  Google Scholar 

  58. J. McDonald, A. Kerek, Nucl. Phys. A 206, 417 (1973)

    ADS  Google Scholar 

  59. R.O. Hughes et al., Phys. Rev. C 71, 044311 (2005)

    ADS  Google Scholar 

  60. O. Roberts et al., Acta Phys. Pol. B 44, 403 (2013)

    ADS  Google Scholar 

  61. J. Genevey et al., Phys. Rev. C 63, 054315 (2001)

    ADS  Google Scholar 

  62. S. Biswas et al., Phys. Rev. C 93, 034324 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the AGATA collaboration, the e661, e680, e669 and e706 GANIL experimental collaborations and the technical teams at Grand Accélérateur National d’Ions Lourds for their support during the experiments. AG has received funding from the Norwegian Research Council, project 325714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lemasson.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemasson, A., Dudouet, J., Rejmund, M. et al. Advancements of \(\gamma \)-ray spectroscopy of isotopically identified fission fragments with AGATA and VAMOS++. Eur. Phys. J. A 59, 134 (2023). https://doi.org/10.1140/epja/s10050-023-01053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01053-0