Skip to main content

Advertisement

Log in

Methods for systematic study of nuclear structure in high-energy collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

There is increasing interest in using high-energy collisions to probe the structure of nuclei, in particular with the high-precision data made possible by collisions performed with pairs of isobaric species. A systematic study requires a variation of parameters representing nuclear properties such as radius, skin thickness, angular deformation, and short-range correlations, to determine the sensitivity of the various observables on each of these properties. In this work we propose a method for efficiently carrying out such study, based on the shifting of positions of nucleons in Monte-Carlo samples. We show that by using this method, statistical demands can be dramatically reduced — potentially reducing the required number of simulated events by orders of magnitude — paving the way for systematic study of nuclear structure in high-energy collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The content of this work is the method, and not any particular numerical results, which is why there is no data to include.]

Notes

  1. In the language of fluid dynamics, this corresponds to irrotational flow.

References

  1. G. Giacalone, Phys. Rev. Lett. 124(20), 202301 (2020). https://doi.org/10.1103/PhysRevLett.124.202301. arXiv:1910.04673 [nucl-th]

    Article  ADS  Google Scholar 

  2. G. Giacalone, Phys. Rev. C 102(2), 024901 (2020). https://doi.org/10.1103/PhysRevC.102.024901. arXiv:2004.14463 [nucl-th]

    Article  ADS  Google Scholar 

  3. G. Giacalone, J. Jia, C. Zhang, Phys. Rev. Lett. 127(24), 242301 (2021). https://doi.org/10.1103/PhysRevLett.127.242301. arXiv:2105.01638 [nucl-th]

    Article  ADS  Google Scholar 

  4. B. Bally, M. Bender, G. Giacalone, V. Somà, Phys. Rev. Lett. 128(8), 082301 (2022). https://doi.org/10.1103/PhysRevLett.128.082301. arXiv:2108.09578 [nucl-th]

    Article  ADS  Google Scholar 

  5. J. Jia, Phys. Rev. C 105(4), 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905. arXiv:2109.00604 [nucl-th]

    Article  ADS  Google Scholar 

  6. G. Giacalone, J. Jia, V. Somà, Phys. Rev. C 104(4), L041903 (2021). https://doi.org/10.1103/PhysRevC.104.L041903. arXiv:2102.08158 [nucl-th]

    Article  ADS  Google Scholar 

  7. C. Zhang, J. Jia, Phys. Rev. Lett. 128(2), 022301 (2022). https://doi.org/10.1103/PhysRevLett.128.022301. arXiv:2109.01631 [nucl-th]

    Article  ADS  Google Scholar 

  8. B. Bally, G. Giacalone, M. Bender. arXiv:2301.02420 [nucl-th]

  9. R. Samanta, P. Bozek, arXiv:2301.10659 [nucl-th]

  10. M. Abdallah et al., [STAR] Phys. Rev. C 105(1), 014901 (2022). https://doi.org/10.1103/PhysRevC.105.014901. arXiv:2109.00131 [nucl-ex]

    Article  ADS  Google Scholar 

  11. J. Hammelmann, A. Soto-Ontoso, M. Alvioli, H. Elfner, M. Strikman, Phys. Rev. C 101(6), 061901 (2020). https://doi.org/10.1103/PhysRevC.101.061901. arXiv:1908.10231 [nucl-th]

    Article  ADS  Google Scholar 

  12. H. j. Xu, H. Li, X. Wang, C. Shen, F. Wang, Phys. Lett. B 819, 136453 (2021) https://doi.org/10.1016/j.physletb.2021.136453. arXiv:2103.05595 [nucl-th]

  13. G. Nijs, W. van der Schee, arXiv:2112.13771 [nucl-th]

  14. S. Zhao, H. j. Xu, Y. X. Liu, H. Song, arXiv:2204.02387 [nucl-th]

  15. J. Jia, G. Giacalone, C. Zhang, arXiv:2206.10449 [nucl-th]

  16. L.M. Liu, C.J. Zhang, J. Zhou, J. Xu, J. Jia, G.X. Peng, Phys. Lett. B 834, 137441 (2022). https://doi.org/10.1016/j.physletb.2022.137441. arXiv:2203.09924 [nucl-th]

    Article  Google Scholar 

  17. M. Nie, C. Zhang, Z. Chen, L. Yi, J. Jia, arXiv:2208.05416 [nucl-th]

  18. J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 101(2), 024911 (2020). https://doi.org/10.1103/PhysRevC.101.024911. arXiv:1808.02106 [nucl-th]

    Article  ADS  Google Scholar 

  19. D. Everett et al. [JETSCAPE], Phys. Rev. C 103, 5, 054904 (2021) https://doi.org/10.1103/PhysRevC.103.054904. arXiv:2011.01430 [hep-ph]

  20. J.E. Parkkila, A. Onnerstad, S.F. Taghavi, C. Mordasini, A. Bilandzic, M. Virta, D.J. Kim, Phys. Lett. B 835, 137485 (2022). https://doi.org/10.1016/j.physletb.2022.137485. arXiv:2111.08145 [hep-ph]

    Article  Google Scholar 

  21. J. Jia, G. Giacalone, C. Zhang, arXiv:2206.07184 [nucl-th]

  22. B. Alver et al. [PHOBOS], Phys. Rev. Lett. 98, 242302 (2007) https://doi.org/10.1103/PhysRevLett.98.242302. arXiv:nucl-ex/0610037 [nucl-ex]

  23. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) [erratum: Phys. Rev. C 82, 039903 (2010)] https://doi.org/10.1103/PhysRevC.82.039903. arXiv:1003.0194 [nucl-th]

  24. M. Luzum, J. Phys. G 38, 124026 (2011). https://doi.org/10.1088/0954-3899/38/12/124026. arXiv:1107.0592 [nucl-th]

    Article  ADS  Google Scholar 

  25. M. Luzum, H. Petersen, J. Phys. G 41, 063102 (2014). https://doi.org/10.1088/0954-3899/41/6/063102. arXiv:1312.5503 [nucl-th]

    Article  ADS  Google Scholar 

  26. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  Google Scholar 

  27. B. Alver, M. Baker, C. Loizides, P. Steinberg, arXiv:0805.4411 [nucl-ex]

  28. J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 92(1), 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901. arXiv:1412.4708 [nucl-th]

    Article  ADS  Google Scholar 

  29. M. Alvioli, H.J. Drescher, M. Strikman, Phys. Lett. B 680, 225–230 (2009). https://doi.org/10.1016/j.physletb.2009.08.067. arXiv:0905.2670 [nucl-th]

    Article  ADS  Google Scholar 

  30. M. Alvioli, M. Strikman, Phys. Rev. C 83, 044905 (2011). https://doi.org/10.1103/PhysRevC.83.044905. arXiv:1008.2328 [nucl-th]

Download references

Acknowledgements

We thank Govert Nijs and Dean Lee for suggesting to try a reweighting method. We thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. ML acknowledges the support of the São Paulo Research Foundation (FAPESP) under grants 2021/08465-9, 2018/24720-6, and 2017/05685-2, as well as the support of the Brazilian National Council for Scientific and Technological Development (CNPq). We thank support from the “Emilie du Châtelet” visitor programme and from the GLUODYNAMICS project funded by the “P2IO LabEx (ANR-10-LABX-0038)” in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by the Agence Nationale de la Recherche (ANR), France. MH was supported by the National Science Foundation (NSF) within the framework of the MUSES collaboration, under Grant number OAC-2103680. Grant numbers 309012/2022-8,INCT-FNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Luzum.

Additional information

Communicated by Thomas Duguet

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzum, M., Hippert, M. & Ollitrault, JY. Methods for systematic study of nuclear structure in high-energy collisions. Eur. Phys. J. A 59, 110 (2023). https://doi.org/10.1140/epja/s10050-023-01021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01021-8

Navigation