Skip to main content
Log in

AGATA: performance of \(\gamma \)-ray tracking and associated algorithms

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

AGATA is a modern \(\gamma \)-ray spectrometer for in-beam nuclear structure studies, based on \(\gamma \)-ray tracking. Since more than a decade, it has been operated performing experimental physics campaigns in different international laboratories (LNL, GSI, GANIL). This paper reviews the obtained results concerning the performances of \(\gamma \)-ray tracking in AGATA and associated algorithms. We discuss \(\gamma \)-ray tracking and algorithms developed for AGATA. Then, we present performance results in terms of efficiency and peak-to-total for AGATA. The importance of the high effective angular resolution of \(\gamma \)-ray tracking arrays is emphasised, e.g. with respect to Doppler correction. Finally, we briefly touch upon the subject of \(\gamma \)-ray imaging and its connection to \(\gamma \)-ray tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data access is governed by the AGATA Data Policy (https://www.agata.org/acc/data_policy).]

References

  1. S. Akkoyun et al., Agata-advanced GAmma tracking array. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 668, 26–58 (2012). https://doi.org/10.1016/j.nima.2011.11.081

    Article  ADS  Google Scholar 

  2. I.Y. Lee, Gamma-ray tracking detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 422(1), 195–200 (1999). https://doi.org/10.1016/S0168-9002(98)01093-6

    Article  ADS  Google Scholar 

  3. I.Y. Lee et al., Gretina: a gamma ray energy tracking array. Nuclear Phys. A 746, 255–259 (2004), proceedings of the Sixth International Conference on Radioactive Nuclear Beams (RNB6). https://doi.org/10.1016/j.nuclphysa.2004.09.038. https://www.sciencedirect.com/science/article/pii/S0375947404009637

  4. I.Y. Lee, M.A. Deleplanque, K. Vetter, Developments in large gamma-ray detector arrays. Rep. Progress Phys. 66(7), 1095–1144 (2003). https://doi.org/10.1088/0034-4885/66/7/201

    Article  ADS  Google Scholar 

  5. J. Eberth, J. Simpson, From ge(li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors. Progress Particle Nuclear Phys. 60(2), 283–337 (2008). https://doi.org/10.1016/j.ppnp.2007.09.001

    Article  ADS  Google Scholar 

  6. E. Farnea, F. Recchia, D. Bazzacco, Th. Kröll, Zs. Podolyák, B. Quintana, A. Gadea, Conceptual design and Monte Carlo simulations of the AGATA array. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 621(1–3), 331–343 (2010). https://doi.org/10.1016/j.nima.2010.04.043

    Article  ADS  Google Scholar 

  7. A. Bracco, G. Duchêne, Zs. Podolyák, P. Reiter, Gamma spectroscopy with agata in its first phases: new insights in nuclear excitations along the nuclear chart. Progress Particle Nuclear Phys. 121, 103887 (2021). https://doi.org/10.1016/j.ppnp.2021.103887

    Article  Google Scholar 

  8. W. Korten et al., Physics opportunities with the advanced gamma tracking array: Agata. Eur. Phys. J. A Hadrons and nuclei 56(5)

  9. S. Tashenov, J. Gerl, Tango-new tracking algorithm for gamma-rays. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 622(3), 592–601 (2010). https://doi.org/10.1016/j.nima.2010.07.040

    Article  ADS  Google Scholar 

  10. G.J. Schmid et al., A \(\gamma \)-ray tracking algorithm for the GRETA spectrometer. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 430(1), 69–83 (1999). https://doi.org/10.1016/S0168-9002(99)00188-6

    Article  ADS  Google Scholar 

  11. J. van der Marel, B. Cederwall, Backtracking as a way to reconstruct compton scattered \(\gamma \)-rays. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 437(2–3), 538–551 (1999). https://doi.org/10.1016/S0168-9002(99)00801-3

    Article  ADS  Google Scholar 

  12. A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, J.-P. Thibaud, \(\gamma \)-ray tracking algorithms: a comparison. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 533(3), 454–466 (2004). https://doi.org/10.1016/j.nima.2004.06.154

    Article  ADS  Google Scholar 

  13. S. Paschalis et al., The performance of the gamma-ray energy tracking in-beam nuclear array Gretina. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 709, 44–55 (2013). https://doi.org/10.1016/j.nima.2013.01.009

    Article  ADS  Google Scholar 

  14. D. Bazzacco, The advanced gamma ray tracking array agata. Nuclear Phys. A 746, 248–254 (2004), proceedings of the Sixth International Conference on Radioactive Nuclear Beams (RNB6). https://doi.org/10.1016/j.nuclphysa.2004.09.148. https://www.sciencedirect.com/science/article/pii/S0375947404009625

  15. T. Lauritsen et al., Characterization of a gamma-ray tracking array: a comparison of Gretina and gammasphere using a 60co source. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 836, 46–56 (2016). https://doi.org/10.1016/j.nima.2016.07.027

    Article  ADS  Google Scholar 

  16. A. Korichi, T. Lauritsen, Tracking \(\gamma \) rays in highly segmented hpge detectors: a review of agata and Gretina. Eur. Phys. J. A 55(7), 121 (2019). https://doi.org/10.1140/epja/i2019-12787-1

    Article  ADS  Google Scholar 

  17. G. Suliman, D. Bucurescu, Fuzzy clustering algorithm for gamma ray tracking in segmented detectors. Romanian Rep. Phys. 62(1), 27–36 (2010)

    Google Scholar 

  18. F. Didierjean, G. Duchêne, A. Lopez-Martens, The deterministic annealing filter: A new clustering method for \(\gamma \)-ray tracking algorithms. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 615(2), 188–200 (2010). https://doi.org/10.1016/j.nima.2010.01.030

    Article  ADS  Google Scholar 

  19. D. Bazzacco R. Venturelli, Adaptive grid search as pulse shape analysis algorithm for \(\gamma \)-tracking and results, Technical report, LNL (2004)

  20. S. Agostinelli et al., Geant4-a simulation toolkit. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  21. L. Milechina, B. Cederwall, Improvements in \(\gamma \)-ray reconstruction with positive sensitive ge detectors using the backtracking method. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 508(3), 394–403 (2003). https://doi.org/10.1016/S0168-9002(03)01698-X

    Article  ADS  Google Scholar 

  22. K. Vetter et al., Three-dimensional position sensitivity in two-dimensionally segmented hp-ge detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 452(1), 223–238 (2000). https://doi.org/10.1016/S0168-9002(00)00430-7.

    Article  ADS  Google Scholar 

  23. F. Recchia, D. Bazzacco, E. Farnea, R. Venturelli, S. Aydin, G. Suliman, C.A. Ur, Performance of an agata prototype detector estimated by compton-imaging techniques. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 604(1), 60–63 (2009). https://doi.org/10.1016/j.nima.2009.01.079. (pSD8)

    Article  ADS  Google Scholar 

  24. P.-A. Söderström et al., Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 638(1), 96–109 (2011). https://doi.org/10.1016/j.nima.2011.02.089

    Article  ADS  Google Scholar 

  25. J. Ljungvall et al., Performance of the advanced gamma tracking array at ganil. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 955, 163297 (2020). https://doi.org/10.1016/j.nima.2019.163297

    Article  Google Scholar 

  26. N.J. Hammond, T. Duguet, C.J. Lister, Ambiguity in gamma-ray tracking of ‘two-interaction’ events. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 547(2), 535–540 (2005). https://doi.org/10.1016/j.nima.2005.03.148

    Article  ADS  Google Scholar 

  27. M. Labiche et al., Simulation of the agata array and coupling with ancillary detectors, EPJ A

  28. D. Bazzacco, mgt code developed within the tmr program ‘gamma-ray tracking detectors’

  29. Th. Kröll et al., Gamma-ray tracking with the mars detector. Eur. Phys. J. A Hadrons Nuclei 20(1), 205–206 (2003). https://doi.org/10.1140/epja/i2002-10355-6.

    Article  ADS  Google Scholar 

  30. A. Korichi, T. Lauritsen, In preparation

  31. A. Lopez-Martens, AGATA tracking code improvement, Second AGATA-GRETINA Collaboration meeting, (2018). https://indico.in2p3.fr/event/16944

  32. Philipp Napiralla, Employing \(\gamma \)-ray tracking as an event-discrimination technique for \(\gamma \)-spectroscopy with agata, Phd thesis, Technische Universität Darmstadt, Darmstadt, Germany, date Deposited: 2019-12-17 (12 2019). http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-96737

  33. P. Napiralla et al., Approach to a self-calibrating experimental \(\gamma \)-ray tracking algorithm. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 955, 163337 (2020). https://doi.org/10.1016/j.nima.2019.163337

    Article  Google Scholar 

  34. S. Heil, S. Paschalis, M. Petri, On the self-calibration capabilities of \(\gamma \)-ray energy tracking arrays. Eur. Phys. J. A 54(10), 172 (2018). https://doi.org/10.1140/epja/i2018-12609-0.

    Article  ADS  Google Scholar 

  35. Mikael Andersson, Torbjörn Bäck, Gamma-ray track reconstruction using graph neural networks. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1048, 168000 (2023). https://doi.org/10.1016/j.nima.2022.168000

    Article  Google Scholar 

  36. A. Gadea et al., Conceptual design and infrastructure for the installation of the first agata sub-array at lnl. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 654(1), 88–96 (2011). https://doi.org/10.1016/j.nima.2011.06.004

    Article  ADS  Google Scholar 

  37. N. Lalović et al., Performance of the AGATA \(\gamma \)-ray spectrometer in the prespec set-up at GSI. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 806, 258–266 (2016). https://doi.org/10.1016/j.nima.2015.10.032

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Clément, J. Ljungvall, R. M. Pérez-Vidal, J. Dudouet, L. Ménager, On the agata performances at low \(\gamma \)-ray energies, Submitted to NIM A

  39. C.E. Lehner, Z. He, G.F. Knoll, Intelligent gamma-ray spectroscopy using 3-d position-sensitive detectors. IEEE Trans. Nuclear Sci. 50(4), 1090–1097 (2003). https://doi.org/10.1109/TNS.2003.814583

    Article  ADS  Google Scholar 

  40. F.C.L. Crespi et al., Response of agata segmented hpge detectors to gamma rays up to 15.1 mev. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 705, 47 (2013). https://doi.org/10.1016/j.nima.2012.12.084

    Article  ADS  Google Scholar 

  41. B. Million et al., Measurement of 15 mev \(\gamma \)-rays with the ge cluster detectors of euroball. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 452(3), 422–430 (2000). https://doi.org/10.1016/S0168-9002(00)00444-7.

    Article  ADS  Google Scholar 

  42. M. Ciemała et al., Measurements of high-energy \(\gamma \)-rays with labr3:ce detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 608(1), 76–79 (2009). https://doi.org/10.1016/j.nima.2009.06.019

    Article  ADS  Google Scholar 

  43. A.M. Stefanini et al., The heavy-ion magnetic spectrometer prisma. Nuclear Phys. A 701(1), 217–221 (2002), 5th International Conference on Radioactive Nuclear Beams. https://doi.org/10.1016/S0375-9474(01)01578-0

  44. M. Rejmund et al., Performance of the improved larger acceptance spectrometer: Vamos++. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 646(1), 184–191 (2011). https://doi.org/10.1016/j.nima.2011.05.007

    Article  ADS  Google Scholar 

  45. J.N Scheurer et al., Improvements in the in-beam \(\gamma \)-ray spectroscopy provided by an ancillary detector coupled to a ge \(\gamma \)-spectrometer: the diamant-eurogam ii example. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 385(3), 501–510 (1997). https://doi.org/10.1016/S0168-9002(96)01038-8

  46. J.J. Valiente-Dobón et al., Neda-neutron detector array. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 927, 81–86 (2019). https://doi.org/10.1016/j.nima.2019.02.021

    Article  ADS  Google Scholar 

  47. M. Assié et al., The mugast-agata-vamos campaign: set-up and performances. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1014, 165743 (2021). https://doi.org/10.1016/j.nima.2021.165743

    Article  Google Scholar 

  48. C. Domingo-Pardo, D. Bazzacco, P. Doornenbal, E. Farnea, A. Gadea, J. Gerl, H.J. Wollersheim, Conceptual design and performance study for the first implementation of agata at the in-flight rib facility of gsi. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 694, 297–312 (2012). https://doi.org/10.1016/j.nima.2012.08.039

    Article  ADS  Google Scholar 

  49. E. Clément et al., Conceptual design of the agata 1\(\pi \) array at ganil. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 855(Supplemental C), 1–12 (2017). https://doi.org/10.1016/j.nima.2017.02.063

    Article  ADS  Google Scholar 

  50. F. Recchia, C. Michelagnoli, State-of-the-Art Gamma-Ray Spectrometers for In-Beam Measurements (Springer International Publishing, Cham, 2022), pp.181–207. https://doi.org/10.1007/978-3-031-10751-1_5

    Book  Google Scholar 

  51. A. Bracco, F.C.L. Crespi, E.G. Lanza, Gamma decay of pygmy states from inelastic scattering of ions. Eur. Phys. J. A 51, 99 (2015). https://doi.org/10.1140/epja/i2015-15099-6

    Article  ADS  Google Scholar 

  52. D. Mengoni, Ph.D. thesis, University of Camerino (2007)

  53. A. Lemasson, J. Dudouet, M. Rejmund, J. Ljungvall, A. Görgen and W. Korten, Advancements of \(\gamma \)-ray spectroscopy of isotopically identified fission fragments with agata and vamos++, EPJ A

  54. A. Gadea et al., Transfer reaction review chapter (2023)

  55. F. Recchia et al., Position resolution of the prototype agata triple-cluster detector from an in-beam experiment. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 604(3), 555–562 (2009). https://doi.org/10.1016/j.nima.2009.02.042

    Article  ADS  Google Scholar 

  56. H.J. Wollersheim et al., Rare isotopes investigation at gsi (rising) using gamma-ray spectroscopy at relativistic energies. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 537(3), 637–657 (2005). https://doi.org/10.1016/j.nima.2004.08.072

    Article  ADS  Google Scholar 

  57. J.R. Beene et al., Heavy-ion excitation and photon decay of giant resonances in \(^{208}\rm Pb \). Phys. Rev. C 39, 1307–1319 (1989). https://doi.org/10.1103/PhysRevC.39.1307

    Article  ADS  Google Scholar 

  58. G. R. Satchler, Direct Nuclear Reactions, The International Series of Monographs on Physics, Oxford University Press, Oxford

  59. B. Alikhani et al., Compton polarimetry with a 36-fold segmented hpge-detector of the agata-type. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 675, 144–154 (2012). https://doi.org/10.1016/j.nima.2012.02.016

    Article  ADS  Google Scholar 

  60. S. Tashenov, Circular polarimetry with gamma-ray tracking detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 640(1), 164–169 (2011). https://doi.org/10.1016/j.nima.2011.03.011

    Article  ADS  Google Scholar 

  61. P.G. Bizzeti et al., Analyzing power of agata triple clusters for gamma-ray linear polarization. Eur. Phys. J. A 51(4), 49 (2015). https://doi.org/10.1140/epja/i2015-15049-4

    Article  Google Scholar 

  62. C. Stahl, N. Pietralla, G. Rainovski, M. Reese, Coulex-multipolarimetry with relativistic heavy-ion beams. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 770, 123–130 (2015). https://doi.org/10.1016/j.nima.2014.10.024

    Article  ADS  Google Scholar 

  63. P. Napiralla et al., Benchmarking the prespec@gsi experiment for coulex-multipolarimetry on the \(\pi \left(p_{3/2}\right)\rightarrow \pi \left(p_{1/2}\right)\) spin-flip transition in \(^{85}\)br. Eur. Phys. J. A 56, 147 (2020). https://doi.org/10.1140/epja/s10050-020-00148-2

    Article  ADS  Google Scholar 

  64. J. Simpson, The euroball spectrometer. Zeitschrift für Physik A Hadrons and Nuclei 358(2), 139–143 (1997). https://doi.org/10.1007/s002180050290

    Article  ADS  MathSciNet  Google Scholar 

  65. J. Ljungvall, J. Nyberg, A study of fast neutron interactions in high-purity germanium detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 546(3), 553–573 (2005). https://doi.org/10.1016/j.nima.2005.03.122

    Article  ADS  Google Scholar 

  66. J. Ljungvall, J. Nyberg, Neutron interactions in agata and their influence on \(\gamma \)-ray tracking. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 550(1), 379–391 (2005). https://doi.org/10.1016/j.nima.2005.04.084

    Article  ADS  Google Scholar 

  67. A Boston et al.., Psa review chapter, EPJ A

  68. A. Ata, A. Kaka, S. Akkoyun, M. Enyigit, T. Hüyük, S.O. Kara, J. Nyberg, Discrimination of gamma rays due to inelastic neutron scattering in agata. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 607(3), 554–563 (2009). https://doi.org/10.1016/j.nima.2009.05.183

  69. M. Enyigit et al., Identification and rejection of scattered neutrons in agata. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 735, 267–276 (2014). https://doi.org/10.1016/j.nima.2013.09.035

  70. D.G. Jenkins, R. Glover, R.D. Herzberg, A.J. Boston, C. Gray-Jones, A. Nordlund, Proof-of-principle for fast neutron detection with advanced tracking arrays of highly segmented germanium detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 602(2), 457–460 (2009). https://doi.org/10.1016/j.nima.2009.01.171

    Article  ADS  Google Scholar 

  71. J. van der Marel, B. Cederwall, Collimatorless imaging of gamma rays with help of gamma-ray tracking. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 471(1), 276–280 (2001). https://doi.org/10.1016/S0168-9002(01)01007-5. (imagaing 2000)

    Article  ADS  Google Scholar 

  72. J. Gerl, Gamma-ray imaging exploiting the compton effect. Nuclear Phys. A 752, 688–695 (2005), proceedings of the 22nd International Nuclear Physics Conference (Part 2). https://doi.org/10.1016/j.nuclphysa.2005.02.068. https://www.sciencedirect.com/science/article/pii/S0375947405002277

  73. S. Moon et al., Compton imaging with AGATA and SmartPET for DESPEC. J. Instrum. 6(12), C12048–C12048 (2011). https://doi.org/10.1088/1748-0221/6/12/c12048

    Article  Google Scholar 

  74. T. Steinbach et al., Compton imaging with a highly-segmented, position-sensitive hpge detector. Eur. Phys. J. A 53(2), 23 (2017). https://doi.org/10.1140/epja/i2017-12214-9

    Article  ADS  Google Scholar 

  75. M. Doncel, F. Recchia, B. Quintana, A. Gadea, E. Farnea, Experimental test of the background rejection, through imaging capability, of a highly segmented agata germanium detector. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 622(3), 614–618 (2010). https://doi.org/10.1016/j.nima.2010.07.069

    Article  ADS  Google Scholar 

  76. S.J. Wilderman, W.L. Rogers, G.F. Knoll, J.C. Engdahl, Fast algorithm for list mode back-projection of compton scatter camera data. IEEE Trans. Nuclear Sci. 45(3), 957–962 (1998). https://doi.org/10.1109/23.682685

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the AGATA collaboration. The AGATA project is supported in France by the CNRS. Data used for this publication were collected at INFN Legnaro, GSI, and GANIL and this work would not have been possible without the valuable contributions from these laboratories and their staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ljungvall.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi, F.C.L., Ljungvall, J., Lopez-Martens, A. et al. AGATA: performance of \(\gamma \)-ray tracking and associated algorithms. Eur. Phys. J. A 59, 111 (2023). https://doi.org/10.1140/epja/s10050-023-01019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01019-2

Navigation