Skip to main content

Advertisement

Log in

Measurement of neutron source characterization of the compact D–D neutron generator with unfolding algorithm

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Based on the Gravel algorithm and the MLEM algorithm, the neutron energy spectrum unfolding algorithms has been developed by using the SY2001 plastic scintillator detector in its entirety to experimentally measure neutron source characterization of the compact D–D neutron generator. In particular, the degree of optimization of the Mean Relative Error (MRE) is proposed as a determinant of the appropriate termination point for iterations to improve the adaptive nature of the algorithm. The developed neutron energy spectrum unfolding algorithms measure the neutron energy spectra and the neutron angular yields of the compact D–D neutron generator, which are compared with Monte Carlo calculated results. Given the good agreement with the existing results, the developed unfolding algorithms can be used to accurately unfolding neutron energy spectrum, especially, for non-pulsed neutron sources. The measured neutron source characterization results show that the compact D–D neutron generator can produce high yields and quasi-mono-energetic neutrons in the range from 2.2 to 2.8 MeV. The D–D neutron angular yields are anisotropic distributions, particularly, which are relatively higher with neutron emission angles ranging from \({40}^\circ \) to \({120}^\circ \). This work measure the neutron energy spectra and the neutron angular yields of the compact D–D neutron generator in Lanzhou University, which provide detailed neutron source characterization for using it in neutron physics and neutron application technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. Walid A. Metwally, Samar El-Sayed1, Ahmad Ababneh1 et al., Nucl. Sci. Tech. 29,52 (2018)

  2. Y. Kasesaz, H. Khalafi, F. Rahmani, Applied Radiation and Isotopes 82, 55 (2013)

    Article  Google Scholar 

  3. M.-C. Han, S.-W. Jing, Y.-D. Gao, et al., Radiation Phys. Chem. 182 (2021)

  4. A.L. Lehnert, K.J. Kearfott, Nuclear Inst. and Methods in Phys. Res. A 638 (2011)

  5. K. Bergaoui, N. Reguigui, C.K. Gary et al., J. Radioanal. Nucl. Chem. 299, 41 (2014)

    Article  Google Scholar 

  6. Robert Adams, Robert Zboray, Horst-Michael Prasser, Appl. Radiation Isotopes 107 (2016)

  7. J.T. Cremer, D.L. Williams, C.K. Gary et al., Nuclear Inst. Methods Phys. Res. A 675 (2012)

  8. Z. Huang, J. Wang, Z. Ma et al., Nuclear Inst. Methods Phys. Res. Sect. A 904, 107 (2018)

  9. Z.W. Huang, J.R. Wang, Z. Wei et al., J. Instrument. 13, P01013 (2018)

    Article  Google Scholar 

  10. Adelphi, http://adelphitech.com/products/dt110.html. Accessed Nov 10(2014)

  11. All-Russia Research Institute of Automatics (VNIIA), http://www.vniia.ru/eng/index.html

  12. Berkeley lab., U.S. Compact Neutron Generator IB-1764. Patent # 6,870,894 (2009)

  13. NSD-Gradel-Fusion, Luxemburg. http://www.nsd-fusion.com

  14. J. Reijonen et al., Appl. Radiat. Isot. 63, 757–763 (2005)

    Article  Google Scholar 

  15. Thermo Fisher Scientific Inc., http://www.thermo.com

  16. Dodson, B, SNL, Press Release August 24 (2012)

  17. B.-W. Zheng, C.-Y. Jiang, Z.-H. Liu et al., Nucl Sci Tech 30, 11 (2019)

    Article  Google Scholar 

  18. F. Mathew, C. Chilian, et al., Nuclear Inst. Methods Phys. Res. Sect. A 985 (2021)

  19. L. Lindemann, G. Zech, Nuclear Inst. Methods Phys. Res. Sect. A 354 (1995)

  20. J. Pûlpân, M. Krâlik, Nuclear Inst. Methods Phys. Res. A 325 (1993)

  21. G. Jacobs, R. Bosch, Nuclear Instruments & Methods 175 (1980)

  22. M. Del Rosario Martinez-Blanco, G. Ornelas-Vargas et al., Appl. Radiat. Isot. 117, 8–14 (2016)

    Article  Google Scholar 

  23. B. Mukherjee, Nuclear Inst. Methods Phys. Res. Sect. A 476,247 (2002)

  24. H. Shahabinejad, S. A. Hosseini, Sohrabpour, Nuclear Inst. Methods Phys. Res. Sect. A 811,82 (2016)

  25. S.J. Twomey, J. Acm. 10(1), 97–101 (1963)

    Article  MathSciNet  Google Scholar 

  26. Jianguo Qin, Caifeng Lai et al., Appl. Radiat. Isotopes 104, 15–24 (2015)

    Article  Google Scholar 

  27. J. Baré, F. Tondeur, Appl. Radiat. Isot. 69, 1121–1124 (2011)

    Article  Google Scholar 

  28. T. Meiner, V . Rozhkov, J. Hesser, et al., IOP Publishing Ltd (2023)

  29. G. Kim, I. Lim, K. Song et al., Nuclear Engineering and Technology (2021)

  30. Natalia Zaitseva, Andrew Glenn, Leslie Carman et al., IEEE Trans. Nucl. Sci. 58(6), 3411–3420 (2011)

    Article  ADS  Google Scholar 

  31. Dietrich Schlegel, Physikalisch-Technische Bundesanstalt Abteilung Ionisierende Strahlung Laborbericht PTB-6.42-05-2 (2005)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (12075105), the NSFC-Nuclear Technology Innovation Joint Fund (U2167203), and the Fundamental Research Funds for the Central Universities (lzujbky-2022-kb07, lzujbky-2022-ey14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Wei.

Additional information

Communicated by Alexandre Obertelli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S.Y., Yang, X., Wang, Y.X. et al. Measurement of neutron source characterization of the compact D–D neutron generator with unfolding algorithm. Eur. Phys. J. A 59, 101 (2023). https://doi.org/10.1140/epja/s10050-023-01007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01007-6

Navigation