Skip to main content
Log in

Investigate the \({\varLambda }\) and \({\bar{{\varLambda }}}\) polarization splitting effect with combined mechanisms

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The significant splitting of \({\varLambda }\) and \({\bar{{\varLambda }}}\) polarization measured in STAR’s Au + Au 7.7GeV collisions seems to be huge and unable to be described satisfactorily by any single mechanism, thus we revisit and combine there different mechanisms together on the basis of our PICR hydrodynamic model, to explain the experimental data. The three mechanisms, i.e. the meson field mechanism, the freeze-out space-time mechanism, and the QGP’s magnetic field mechanism, lie on different stages of high energy collisions, and thus are not contradicted with each other. We find that the meson field mechanism is dominat, while the QGP’s magnetic field mechanism is rather trivial, and freeze-out time effect is restricted by the small FZ time difference, leading to a hierarchy of \({\varDelta } P_J \gg {\varDelta } P_t \gg {\varDelta } P_m\). Besides, the combination of different mechanisms could promote the mean value of polarization splitting from about 3%–4% to 4.5%, which is closer to the experimental measured mean value of 5.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are available from the corresponding author upon request.]

References

  1. L. Adamczyk et al. (The STAR Collaboration), Nature 548, 62 (2017)

  2. J. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)

  3. S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 101, 044611 (2020)

  4. F. Kornas for HADES Collaboration, Talk given at Strangeness Quark Matter 2021, Online, May 17–22 (2021)

  5. F. Becattini, F. Piccinini, J. Rizzo, Phys. Rev. C 77, 024906 (2008)

    ADS  Google Scholar 

  6. J.-H. Gao, S.-W. Chen, W.-T. Deng, Z.-T. Liang, Q. Wang, X.-N. Wang, Phys. Rev. C 77, 044902 (2008)

    ADS  Google Scholar 

  7. V. Vovchenko, D. Anchishkin, L.P. Csernai, Phys. Rev. C 90, 044907 (2014)

    ADS  Google Scholar 

  8. J.-H. Gao, Z.-T. Liang, P. Shi, Q. Wang, X.-N. Wang, Phys. Rev. Lett. 109, 232301 (2012)

    ADS  Google Scholar 

  9. A. Einstein, W. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915)

    ADS  Google Scholar 

  10. S.J. Barnett, Rev. Mod. Phys. 7, 129 (1935)

    ADS  Google Scholar 

  11. F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Annals of Phys. 338, 32 (2013)

    ADS  Google Scholar 

  12. F. Becattini, L.P. Csernai, D.J. Wang, Phys. Rev. C 88, 034905 (2013)

    ADS  Google Scholar 

  13. Z.-T. Liang, X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005)

    ADS  Google Scholar 

  14. X.-G. Huang, P. Huovinen, X.-N. Wang, Phys. Rev. C 84, 054910 (2011)

    ADS  Google Scholar 

  15. B. Betz, M. Gyulassy, G. Torrieri, Phys. Rev. C 76, 044901 (2007)

    ADS  Google Scholar 

  16. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907 (2012)

    ADS  Google Scholar 

  17. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    ADS  Google Scholar 

  18. K. Tuchin, Phys. Rev. C 88, 024911 (2013)

    ADS  Google Scholar 

  19. G. Inghirami, L. Del Zanna, A. Beraudo, M.H. Moghaddam, F. Becattini, M. Bleicher, Eur. Phys. J. C 76, 659 (2016)

    ADS  Google Scholar 

  20. J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang, X.-N. Wang, Phys. Rev. Lett. 109, 232301 (2012)

    ADS  Google Scholar 

  21. F. Becattini, I. Karpenko, M. Lisa, I. Upsal, S. Voloshin, Phys. Rev. C 95, 054902 (2017)

    ADS  Google Scholar 

  22. B. Müller, A. Schäfer, Phys. Rev. D 98, 071902 (2018)

    ADS  Google Scholar 

  23. S. Ryu, V. Jupic, C. Shen, Phys. Rev. C 104, 054908 (2021)

    ADS  Google Scholar 

  24. X.-Y. Wu, C. Yi, G.-Y. Qin, S. Pu, Phys. Rev. C 105, 064909 (2022)

    ADS  Google Scholar 

  25. L.P. Csernai, J.I. Kapusta, T. Welle, Phys. Rev. C 99, 021901(R) (2019)

    ADS  Google Scholar 

  26. Y. Xie, G. Chen, L.P. Csernai, Eur. Phys. J. C 81, 12 (2021)

    ADS  Google Scholar 

  27. O. Vitiuk, L. Bravina, E. Zabrodin, Phys. Lett. B 803, 135298 (2020)

    Google Scholar 

  28. X.Y. Guo, J.F. Liao, E.K. Wang, Scientific Rep. 10, 2196 (2020)

    ADS  Google Scholar 

  29. Y.B. Ivanov, Phys. Rev. C 102, 044904 (2020)

    ADS  Google Scholar 

  30. A. Ayala, M.A.A. Torres, E. Cuautle et al., Phys. Lett. B 810, 135818 (2020)

    Google Scholar 

  31. K. Xu, F. Lin, A. Huang, M. Huang, Phys. Rev. D 106, L071502 (2022)

    ADS  Google Scholar 

  32. Z.-Z. Han, J. Xu, Phys. Lett. B 786, 255 (2018)

    ADS  Google Scholar 

  33. M. Baznat, K. Gudima, A. Sorin, O. Teryaev, Phys. Rev. C 97, 041902(R) (2018)

    ADS  Google Scholar 

  34. R.H. Fang, L.-G. Pang, Q. Wang, X.-N. Wang, Phys. Rev. C 94, 024904 (2016)

    ADS  Google Scholar 

  35. Y.L. Xie, M. Bleicher, H. Stöcker, D.J. Wang, L.P. Csernai, Phys. Rev. C 94, 054907 (2016)

    ADS  Google Scholar 

  36. Y.L. Xie, D.J. Wang, L.P. Csernai, Phys. Rev. C 95, 031901R (2017)

    ADS  Google Scholar 

  37. Y. Xie, D. Wang, L.P. Csernai, Eur. Phys. J. C 80, 39 (2020)

    ADS  Google Scholar 

  38. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    ADS  Google Scholar 

  39. S. Das et al. (STAR Collaboration), Nucl. Phys. A 904-905, 891c (2013)

  40. A. Monnai, B. Schenke, C. Shen, Phys. Rev. C 100, 024907 (2019)

    ADS  Google Scholar 

  41. B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992)

    ADS  Google Scholar 

  42. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997)

    ADS  Google Scholar 

  43. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

  44. Y. Hinschberger, P.-A. Hervieux, Phys. Lett. A 376, 813 (2012)

    ADS  Google Scholar 

  45. Y. Guo, S. Shi, S. Feng, J. Liao, Phys. Lett. B 798, 134929 (2019)

    Google Scholar 

  46. T. Niida et al. (STAR Collaboration), Nucl. Phys. A 982, 511 (2018)

  47. M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104, L061901 (2021)

  48. X.L. Xia, H. Li, X.G. Huang, H.Z. Huang, Phys. Rev. C 100, 014913 (2019)

    ADS  Google Scholar 

  49. F. Becattini, G. Cao, E. Speranza, Eur. Phys. J. C 79, 741 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The work of of Y. L. Xie is supported by National Natural Science Foundation of China (No. 12005196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Xie.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xie, Y. Investigate the \({\varLambda }\) and \({\bar{{\varLambda }}}\) polarization splitting effect with combined mechanisms. Eur. Phys. J. A 59, 108 (2023). https://doi.org/10.1140/epja/s10050-023-00997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00997-7

Navigation