Skip to main content
Log in

Intermittency analysis in relativistic hydrodynamic simulations of heavy-ion collision at FAIR energies

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we present comprehensive results on intermittency using the Scaled Factorial Moment (SFM) technique in Au + Au collisions in the FAIR energy range of 2–12A GeV in pseudorapidity \(\chi (\eta )\), azimuthal \(\chi (\phi \)), and pseudorapidity-azimuthal \(\chi (\eta -\phi \)) spaces. The simulations are performed with a hybrid version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) event generator. Three alternative equations of state (EoS) are employed to investigate the intermittency within the hydrodynamic scenario, namely pure Hadron Gas (HG), Chiral + HG, and Bag Model EoS. In both one and two-dimensional spaces and at all beam energies, a weak intermittent type of emission has been seen for Chiral+HG EoS. In contrast, a strong intermittent kind of emission is observed for Bag Model EoS. The incident beam energy dependency of intermittency has also been investigated. The strength of the intermittency is seen to diminish with increasing beam energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article employs UrQMD event generator with specific configurations and publicly available experimental data points. If the data are required, we can provide them to the corresponding author upon request.]

References

  1. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). https://doi.org/10.1103/PhysRevLett.81.4816

    Article  ADS  Google Scholar 

  2. J. Adams et al., Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  ADS  Google Scholar 

  3. M. Asakawa, U.W. Heinz, B. Muller, Phys. Rev. Lett. 85, 2072 (2000). https://doi.org/10.1103/PhysRevLett.85.2072

    Article  ADS  Google Scholar 

  4. V. Koch, A. Majumder, J. Randrup, Phys. Rev. Lett. 95, 182301 (2005). https://doi.org/10.1103/PhysRevLett.95.182301

    Article  ADS  Google Scholar 

  5. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  6. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006). https://doi.org/10.1016/j.physletb.2006.10.021

    Article  ADS  Google Scholar 

  7. M. Cheng et al., Phys. Rev. D 74, 054507 (2006). https://doi.org/10.1103/PhysRevD.74.054507

    Article  ADS  Google Scholar 

  8. E.S. Bowman, J.I. Kapusta, Phys. Rev. C 79, 015202 (2009). https://doi.org/10.1103/PhysRevC.79.015202

    Article  ADS  Google Scholar 

  9. S. Ejiri, Phys. Rev. D 78, 074507 (2008). https://doi.org/10.1103/PhysRevD.78.074507

    Article  ADS  Google Scholar 

  10. K. Aamodt et al., Phys. Rev. Lett. 107, 032301 (2011). https://doi.org/10.1103/PhysRevLett.107.032301

    Article  ADS  Google Scholar 

  11. G. Aad et al., Phys. Rev. C 86, 014907 (2012). https://doi.org/10.1103/PhysRevC.86.014907

    Article  ADS  Google Scholar 

  12. S. Chatrchyan et al., Phys. Rev. C 89(4), 044906 (2014). https://doi.org/10.1103/PhysRevC.89.044906

    Article  ADS  Google Scholar 

  13. A. Marcinek, Acta Phys. Polon. Supp. 16, 1 (2023). https://doi.org/10.5506/APhysPolBSupp.16.1-A8

    Article  Google Scholar 

  14. V. Okorokov, EPJ Web Conf. 158, 01004 (2017). https://doi.org/10.1051/epjconf/201715801004

    Article  Google Scholar 

  15. G. Odyniec, PoS CPOD2013, 043 (2013). https://doi.org/10.22323/1.185.0043

    Article  Google Scholar 

  16. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl. Phys. A 956, 846 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.019

    Article  ADS  Google Scholar 

  17. T. Ablyazimov et al., Eur. Phys. J. A 53(3), 60 (2017). https://doi.org/10.1140/epja/i2017-12248-y

    Article  ADS  Google Scholar 

  18. C. Sturm, B. Sharkov, H. Stöcker, Nucl. Phys. A 834, 682c (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.124

    Article  ADS  Google Scholar 

  19. R. Holynski et al., Phys. Rev. Lett. 62, 733 (1989). https://doi.org/10.1103/PhysRevLett.62.733

    Article  ADS  Google Scholar 

  20. R. Holynski et al., Phys. Rev. C 40, R2449 (1989). https://doi.org/10.1103/PhysRevC.40.R2449

    Article  ADS  Google Scholar 

  21. R. Albrecht et al., Phys. Lett. B 221, 427 (1989). https://doi.org/10.1016/0370-2693(89)91738-3

    Article  ADS  Google Scholar 

  22. E. Stenlund et al., Nucl. Phys. A 498, 541 (1989). https://doi.org/10.1016/0375-9474(89)90637-4

    Article  ADS  Google Scholar 

  23. M.I. Adamovich et al., Phys. Rev. Lett. 65, 412 (1990). https://doi.org/10.1103/PhysRevLett.65.412

    Article  ADS  Google Scholar 

  24. M.I. Adamovich et al., Phys. Lett. B 242, 512 (1990). https://doi.org/10.1016/0370-2693(90)91804-K

    Article  ADS  Google Scholar 

  25. M.I. Adamovich et al., Phys. Lett. B 263, 539 (1991). https://doi.org/10.1016/0370-2693(91)90502-H

    Article  ADS  Google Scholar 

  26. S. Gope, B. Bhattacharjee, Eur. Phys. J. A 57(2), 44 (2021). https://doi.org/10.1140/epja/s10050-021-00361-7

    Article  ADS  Google Scholar 

  27. C. Albajar et al., Nucl. Phys. B 345, 1 (1990). https://doi.org/10.1016/0550-3213(90)90606-E

    Article  ADS  Google Scholar 

  28. J.B. Singh, J.M. Kohli, Phys. Lett. B 261, 160 (1991). https://doi.org/10.1016/0370-2693(91)91344-U

    Article  ADS  Google Scholar 

  29. S.S. Wang, J. Zhang, Y.X. Ye, C.G. Xiao, Y. Zhong, Phys. Rev. D 49, 5785 (1994). https://doi.org/10.1103/PhysRevD.49.5785

    Article  Google Scholar 

  30. P. Sarma, B. Bhattacharjee, Phys. Rev. C 99(3), 034901 (2019). https://doi.org/10.1103/PhysRevC.99.034901

    Article  ADS  Google Scholar 

  31. A. Bialas, R.B. Peschanski, Nucl. Phys. B 273, 703 (1986). https://doi.org/10.1016/0550-3213(86)90386-X

    Article  ADS  Google Scholar 

  32. H. Adhikary, EPJ Web Conf. 274, 06008 (2022). https://doi.org/10.1051/epjconf/202227406008

    Article  Google Scholar 

  33. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

    Article  ADS  Google Scholar 

  34. M. Bleicher et al., J. Phys. G 25, 1859 (1999). https://doi.org/10.1088/0954-3899/25/9/308

    Article  ADS  Google Scholar 

  35. D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stoecker, W. Greiner, Phys. Lett. B 547, 7 (2002). https://doi.org/10.1016/S0370-2693(02)02736-3

    Article  ADS  Google Scholar 

  36. J. Steinheimer, S. Schramm, H. Stocker, Phys. Rev. C 84, 045208 (2011). https://doi.org/10.1103/PhysRevC.84.045208

    Article  ADS  Google Scholar 

  37. D.H. Rischke, Y. Pursun, J.A. Maruhn, Nucl. Phys. A 595, 383 (1995). https://doi.org/10.1016/0375-9474(95)00356-3. [Erratum: Nucl. Phys. A 596, 717-717 (1996)]

  38. A. Bialas, R.B. Peschanski, Nucl. Phys. B 308, 857 (1988). https://doi.org/10.1016/0550-3213(88)90131-9

    Article  ADS  Google Scholar 

  39. Y.L. Xie, G. Chen, J.L. Wang, Z.H. Liu, M.J. Wang, Nucl. Phys. A 920, 33 (2013). https://doi.org/10.1016/j.nuclphysa.2013.10.008

    Article  ADS  Google Scholar 

  40. A. Bialas, M. Gazdzicki, Phys. Lett. B 252, 483 (1990). https://doi.org/10.1016/0370-2693(90)90575-Q

    Article  ADS  Google Scholar 

  41. W. Ochs, Phys. Lett. B 247, 101 (1990). https://doi.org/10.1016/0370-2693(90)91056-H

    Article  ADS  Google Scholar 

  42. P. Lipa, B. Buschbeck, Phys. Lett. B 223, 465 (1989). https://doi.org/10.1016/0370-2693(89)91634-1

    Article  ADS  Google Scholar 

  43. R.C. Hwa, Phys. Rev. D 41, 1456 (1990). https://doi.org/10.1103/PhysRevD.41.1456

    Article  ADS  Google Scholar 

  44. A. Bialas, R.C. Hwa, Phys. Lett. B 253, 436 (1991). https://doi.org/10.1016/0370-2693(91)91747-J

    Article  ADS  Google Scholar 

  45. J. Wosiek, Acta Physica Polonica Series B 19(10), 863 (1988)

    Google Scholar 

  46. H. Satz, Nucl. Phys. B 326, 613 (1989). https://doi.org/10.1016/0550-3213(89)90546-4

    Article  ADS  MathSciNet  Google Scholar 

  47. N.G. Antoniou, E.N. Argyres, C.G. Papadopoulos, A.P. Contogouris, S.D.P. Vlassopulos, Phys. Lett. B 245, 619 (1990). https://doi.org/10.1016/0370-2693(90)90701-7

    Article  ADS  Google Scholar 

  48. V. Klochkov, I. Selyuzhenkov, J. Phys. Conf. Ser. 798(1), 012059 (2017). https://doi.org/10.1088/1742-6596/798/1/012059

    Article  Google Scholar 

  49. J.L. Klay et al., Phys. Rev. C 68, 054905 (2003). https://doi.org/10.1103/PhysRevC.68.054905

    Article  ADS  Google Scholar 

  50. J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002). https://doi.org/10.1103/PhysRevLett.88.102301

    Article  ADS  Google Scholar 

  51. W. Ochs, J. Wosiek, Phys. Lett. B 214, 617 (1988). https://doi.org/10.1016/0370-2693(88)90131-1

    Article  ADS  Google Scholar 

  52. N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, A.I. Karanikas, C.N. Ktorides, Nucl. Phys. A 693, 799 (2001). https://doi.org/10.1016/S0375-9474(01)00921-6

    Article  ADS  Google Scholar 

  53. M.A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004). https://doi.org/10.1142/S0217751X05027965

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Partha Pratim Bhaduri (VECC Kolkata) and Dr. Subhasis Samanta for their valuable comments and careful reading of the manuscript. We also acknowledge the financial support provided by the Science and Engineering Research Board, DST-SERB (SERB/2016/001604), New Delhi. The computational resources were provided by the Grid Computing Facility at VECC-Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Sharma.

Additional information

Communicated by Carlos Munoz Camacho.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, O., Sharma, A. & Ahmad, N. Intermittency analysis in relativistic hydrodynamic simulations of heavy-ion collision at FAIR energies. Eur. Phys. J. A 59, 92 (2023). https://doi.org/10.1140/epja/s10050-023-00994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00994-w

Navigation