Skip to main content
Log in

Production of n-rich nuclei in red giant stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 26 May 2023

This article has been updated

Abstract

We outline a partial historical summary of the steps through which the nucleosynthesis phenomena induced by slow neutron captures (the s-process) were clarified, a scientific achievement in which Franz Käppeler played a major role. We start by recalling the early phenomenological approach, which yielded a basic understanding of the subject even before models for the parent stellar evolutionary stages were developed. Through such a tool, rough limits for the neutron density and exposure were set, and the crucial fact was understood that more than one nucleosynthesis component is required to account for solar abundances of s-process nuclei up to the Pb-Bi region. We then summarize the gradual understanding of the stellar processes actually involved in the production of nuclei from Sr to Pb (the so-called Main Component, achieved in the last decade of the past century and occurring in red giants of low and intermediate mass, M \(\lesssim \) 8 M\(_{\odot }\)) populating, in the HR diagram, the Asymptotic Giant Branch or AGB region. We conclude by giving some details on more recent research concerning mixing mechanisms inducing the activation of the main neutron source, \(^{13}\)C(\(\alpha \),n)\(^{16}\)O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no associated data. Original data can be found in the quoted references.]

Change history

References

  1. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29(4), 547–650 (1957). https://doi.org/10.1103/RevModPhys.29.547

    Article  ADS  Google Scholar 

  2. A.G.W. Cameron, Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69(408), 201 (1957). https://doi.org/10.1086/127051

    Article  ADS  Google Scholar 

  3. P.W. Merrill, Spectroscopic observations of stars of class S. Astrophys. J. 116, 21 (1952). https://doi.org/10.1086/145589

    Article  ADS  Google Scholar 

  4. H.E. Suess, H.C. Urey, Abundances of the elements. Rev. Mod. Phys. 28(1), 53–74 (1956). https://doi.org/10.1103/RevModPhys.28.53

    Article  ADS  Google Scholar 

  5. J.L. Greenstein, Nuclear Reactions affecting the abundance of the elements: general survey, in Colloque International d’Astrophysique, Liège, September, pp 12–13 (1953)

  6. C.D. Coryell, The periodic table: the 6d–5f mixed transition group. J. Chem. Educ. 29(2), 62 (1952). https://doi.org/10.1021/ed029p62

    Article  Google Scholar 

  7. F.K. Thielemann, From the slow to the rapid neutron capture process. Eur. Phys. J. A 59, 12 (2023)

    Article  ADS  Google Scholar 

  8. D.D. Clayton, W.A. Fowler, T.E. Hull, B.A. Zimmerman, Neutron capture chains in heavy element synthesis. Ann. Phys. 12(3), 331–408 (1961). https://doi.org/10.1016/0003-4916(61)90067-7

    Article  ADS  Google Scholar 

  9. P.A. Seeger, W.A. Fowler, D.D. Clayton, Nucleosynthesis of heavy elements by neutron capture. Astrophys. J Suppl. 11, 121 (1965). https://doi.org/10.1086/190111

    Article  ADS  Google Scholar 

  10. H.C. Urey, A. DuFresne, The abundance of the elements. Probl. Cosmogeny 7, 74 (1964)

    ADS  Google Scholar 

  11. R.L. Macklin, J.H. Gibbons, Neutron capture data at stellar temperatures. Rev. Mod. Phys. 37(1), 166–176 (1965). https://doi.org/10.1103/RevModPhys.37.166

    Article  ADS  Google Scholar 

  12. M. Schwarzschild, R. Härm, Hydrogen mixing by helium-shell flashes. Astrophys. J. 150, 961 (1967). https://doi.org/10.1086/149396

    Article  ADS  Google Scholar 

  13. D. Sugimoto, M.Y. Fujimoto, A general theory for thermal pulses of finite amplitude in nuclear shell-burnings. Publ. Astron. Soc. Jpn. 30, 467–482 (1978)

    ADS  Google Scholar 

  14. D. Prialnik, A. Kovetz, G. Shaviv, The effect of diffusion on asymptotic branch evolution. Astrophys. J. 247, 225–235 (1981). https://doi.org/10.1086/159029

    Article  ADS  Google Scholar 

  15. N. Mowlavi, Stellar evolution in real time: single star evolution. New Astron. Rev. 43(6), 389–402 (1999). https://doi.org/10.1016/S1387-6473(99)00026-3

    Article  ADS  Google Scholar 

  16. R.K. Ulrich, The s-process in stars, in Proceedings of the Conference on Explosive Nucleosynthesis, Austin, Texas, April 2–3, 1973. D. N. Schramm and W. D. Arnett (ed.). Austin: University of Texas Press (1973)

  17. S.A. Becker, J.I. Iben, The asymptotic giant branch evolution of intermediate-mass stars as a function of mass and composition. II. Through the first major thermal pulse and the consequences of convective dredge-up. Astrophys. J. 237, 111–129 (1980). https://doi.org/10.1086/157850

    Article  ADS  Google Scholar 

  18. J.I. Iben, Low mass asymptotic giant branch evolution. I. Astrophys. J. 260, 821–837 (1982). https://doi.org/10.1086/160301

    Article  ADS  Google Scholar 

  19. J.W. Truran, J.I. Iben, On s-process nucleosynthesis in thermally pulsing stars. Astrophys. J. 216, 797–810 (1977). https://doi.org/10.1086/155523

    Article  ADS  Google Scholar 

  20. J.B. Kaler, J.I. Iben, S.A. Becker, On the enhancement of helium and nitrogen in planetary nebulae. Astrophys. J. Lett. 224, 63–66 (1978). https://doi.org/10.1086/182760

    Article  ADS  Google Scholar 

  21. J.I. Iben, J.W. Truran, On the surface composition of thermally pulsing stars of high luminosity and on the contribution of such stars to the element enrichment of the interstellar medium. Astrophys. J. 220, 980–995 (1978). https://doi.org/10.1086/155986

    Article  ADS  Google Scholar 

  22. R. Gallino, Eur. Phys. J. A (2023)

  23. D.D. Clayton, R.A. Ward, S-process studies: exact evaluation of an exponential distribution of exposures. Astrophys. J. 193, 397–400 (1974). https://doi.org/10.1086/153175

    Article  ADS  Google Scholar 

  24. F. Kaeppeler, R. Gallino, M. Busso, G. Picchio, C.M. Raiteri, S-process nucleosynthesis: classical approach and asymptotic giant branch models for low-mass stars. Astrophys. J. 354, 630 (1990). https://doi.org/10.1086/168720

    Article  ADS  Google Scholar 

  25. R.A. Ward, M.J. Newman, S-process studies: the effect of a pulsed neutron flux. Astrophys. J. 219, 195–212 (1978). https://doi.org/10.1086/155768

    Article  ADS  Google Scholar 

  26. O. Straniero, C. Abia, I. Domínguez, From Reactors to Stars. Eur. Phys. J. A. 59, 17. https://doi.org/10.1140/epja/s10050-023-00926-8

  27. J.I. Iben, A. Renzini, Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 21, 271–342 (1983). https://doi.org/10.1146/annurev.aa.21.090183.001415

    Article  ADS  Google Scholar 

  28. B. Paczyński, Evolution of single stars III stationary shell sources. Acta Astron. 20, 287 (1970)

    ADS  Google Scholar 

  29. B. Paczyński, Evolution of single stars. V. Carbon ignition in population I stars. Acta Astron. 21, 271 (1971)

    ADS  Google Scholar 

  30. B. Paczynski, Core mass-interflash period relation for double shell source stars. Astrophys. J. 202, 558–560 (1975). https://doi.org/10.1086/154006

    Article  ADS  Google Scholar 

  31. A. Chieffi, O. Straniero, M. Salaris, Calibration of stellar models. Astrophys. J. Lett. 445, 39 (1995). https://doi.org/10.1086/187884

    Article  ADS  Google Scholar 

  32. O. Straniero, R. Gallino, M. Busso, A. Chieffi, C.M. Raiteri, M. Limongi, M. Salaris, Radiative 13C burning in asymptotic giant branch stars and s-processing. Astrophys. J. Lett. 440, 85 (1995). https://doi.org/10.1086/187767

    Article  ADS  Google Scholar 

  33. J.I. Iben, The carbon star mystery: why do the low mass ones become such, and where have all the high mass ones gone? Astrophys. J. 246, 278–291 (1981). https://doi.org/10.1086/158921

    Article  ADS  Google Scholar 

  34. J.I. Iben, On intermediate-mass single stars and accreting white dwarfs as sources of neutron-rich isotopes. Astrophys. J. 243, 987–993 (1981). https://doi.org/10.1086/158663

    Article  ADS  Google Scholar 

  35. J.I. Iben, A. Renzini, On the formation of carbon star characteristics and the production of neutron-rich isotopes in asymptotic giant branch stars of small core mass. Astrophys. J. Lett. 263, 23–27 (1982). https://doi.org/10.1086/183916

    Article  ADS  Google Scholar 

  36. A.I. Boothroyd, I.-J. Sackmann, Low-mass stars. IV. The production of carbon stars. Astrophys. J. 328, 671 (1988). https://doi.org/10.1086/166324

    Article  ADS  Google Scholar 

  37. R.A. Malaney, M.J. Savage, A.I. Boothroyd, Neutron exposures in time-dependent stellar convective regions. Astrophys. J. 324, 948 (1988). https://doi.org/10.1086/165951

    Article  ADS  Google Scholar 

  38. J.I. Iben, Thermal pulses: p-capture, alpha-capture, s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Astrophys. J. 196, 525–547 (1975). https://doi.org/10.1086/153433

    Article  ADS  Google Scholar 

  39. P.R. Wood, The conditions for dredge-up of carbon during the helium shell flash and the production of carbon stars, in Physical Processes in Red Giants. Astrophysics and Space Science Library, vol. 88, ed. by J.I. Iben, A. Renzini (1981), pp. 135–139. https://doi.org/10.1007/978-94-009-8492-9_11

  40. J. Lattanzio, The formation of a low luminosity carbon star of 1.5M\(_{{\odot }}\). Bull. Am. Astron. Soc. 18, 963 (1986)

    ADS  Google Scholar 

  41. J.C. Lattanzio, Carbon dredge-up in low-mass stars and solar metallicity stars. Astrophys. J. Lett. 344, 25 (1989). https://doi.org/10.1086/185522

    Article  ADS  Google Scholar 

  42. P. Marigo, A. Bressan, C. Chiosi, The formation of carbon stars: indication from TP-AGB analytical modelling. Mem. Soc. Astron. Ital. 67, 713–728 (1996)

    ADS  Google Scholar 

  43. J. Wagenhuber, M.A.T. Groenewegen, New input data for synthetic AGB evolution. Astron. Astrophys. 340, 183–195 (1998). arXiv:astro-ph/9809338

    ADS  Google Scholar 

  44. P. Marigo, Shaping the initial-final mass relation of white dwarfs with AGB outflows, in IAU Symposium, vol. 366 (2022), pp. 216–221. https://doi.org/10.1017/S1743921322000497

  45. B. Gustafsson, Chemical analyses of cool stars. Annu. Rev. Astron. Astrophys. 27, 701–756 (1989). https://doi.org/10.1146/annurev.aa.27.090189.003413

    Article  ADS  Google Scholar 

  46. M. Busso, G. Picchio, R. Gallino, A. Chieffi, Are s-elements really produced during thermal pulses in intermediate-mass stars? Astrophys. J. 326, 196 (1988). https://doi.org/10.1086/166081

    Article  ADS  Google Scholar 

  47. D.L. Lambert, The chemical composition of asymptotic giant branch stars—the S-process, in Evolution of Stars: the Photospheric Abundance Connection, ed. by G. Michaud, A.V. Tutukov, Royal Netherlands Academy of Arts and Sciences Conf., 26 Feb – 1 Mar 1991. vol. 145 (1991), p. 299

  48. C. Abia, P. de Laverny, M. Romero-Gómez, F. Figueras, Characterisation of Galactic carbon stars and related stars from Gaia EDR3. Astron. Astrophys. 664, 45 (2022). https://doi.org/10.1051/0004-6361/202243595. arXiv:2206.00405 [astro-ph.SR]

    Article  Google Scholar 

  49. R. Gallino, M. Busso, G. Picchio, C.M. Raiteri, A. Renzini, On the role of low-mass asymptotic giant branch stars in producing a solar system distribution of s-process isotopes. Astrophys. J. Lett. 334, 45 (1988). https://doi.org/10.1086/185309

    Article  ADS  Google Scholar 

  50. D.S. Dearborn, A.J.C. Bolton, P.P. Eggleton, The effect on the \(^{12}\)C/\(^{13}\)C ratio of repeated deep mixing to the hydrogen burning shell in a red giant. Mon. Not. R. Astron. Soc. 170, 7–10 (1975). https://doi.org/10.1093/mnras/170.1.7P

    Article  Google Scholar 

  51. J.I. Iben, Asymptotic giant branch stars: thermal pulses, carbon production, and dredge up; neutron sources and S-process nucleosynthesis, in Evolution of Stars: The Photospheric Abundance Connection, vol. 145, ed. by G. Michaud, A.V. Tutukov. Royal Netherlands Academy of Arts and Sciences Conf., 26 Feb - 1 Mar 1991. (1991), p. 257

  52. G. Bazan, J.W. Truran, Uncertainty in the \(^{22}\)Ne(\(\alpha \), n)\(^{25}\) Mg reaction rate and s-process nucleosynthesis in asymptotic giant branch stars. Bull. Am. Astron. Soc. 23, 1411 (1991)

    ADS  Google Scholar 

  53. L.E. Brown, D.D. Clayton, SiC particles from asymptotic giant branch stars: MG burning and the s-process. Astrophys. J. Lett. 392, 79 (1992). https://doi.org/10.1086/186430

    Article  ADS  Google Scholar 

  54. G. Bazán, J. W. Truran, The s-process in AGB stars: its operation and theoretical yields, Seas Conf. in Stellar Ecology: Advances in Stellar Evolution (1997), pp. 273–285

  55. N. Mowlavi, A. Jorissen, M. Arnould, Correlated nucleosynthesis of fluorine and s-process elements in asymptotic giant branch stars. Astron. Astrophys. 334, 153–158 (1998)

    ADS  Google Scholar 

  56. M. Busso, R. Gallino, G.J. Wasserburg, Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999). https://doi.org/10.1146/annurev.astro.37.1.239

    Article  ADS  Google Scholar 

  57. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83(1), 157–194 (2011). https://doi.org/10.1103/RevModPhys.83.157. arXiv:1012.5218 [astro-ph.SR]

    Article  ADS  Google Scholar 

  58. S. Cristallo, O. Straniero, R. Gallino, L. Piersanti, I. Domínguez, M.T. Lederer, Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys. J. 696(1), 797–820 (2009). https://doi.org/10.1088/0004-637X/696/1/797. arXiv:0902.0243 [astro-ph.SR]

    Article  ADS  Google Scholar 

  59. M. Busso, D.L. Lambert, L. Beglio, R. Gallino, C.M. Raiteri, V.V. Smith, Nucleosynthesis and mixing on the asymptotic giant branch. II. Carbon and barium stars in the galactic disk. Astrophys. J. 446, 775 (1995). https://doi.org/10.1086/175835

    Article  ADS  Google Scholar 

  60. M. Busso, R. Gallino, C. Travaglio, M. Lugaro, s processing in post-AGB and CH stars at low metallicity. Nucl. Phys. A 688(1–2), 505–507 (2001). https://doi.org/10.1016/S0375-9474(01)00770-9

    Article  ADS  Google Scholar 

  61. M. Busso, R. Gallino, D.L. Lambert, C. Travaglio, V.V. Smith, Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observed s-process abundances. Astrophys. J. 557(2), 802–821 (2001). https://doi.org/10.1086/322258. arXiv:astro-ph/0104424

    Article  ADS  Google Scholar 

  62. C. Abia, M. Busso, R. Gallino, I. Domínguez, O. Straniero, J. Isern, The \(^{85}\)Kr s-process branching and the mass of carbon stars. Astrophys. J. 559(2), 1117–1134 (2001). https://doi.org/10.1086/322383. arXiv:astro-ph/0105486

    Article  ADS  Google Scholar 

  63. C. Abia, I. Domínguez, R. Gallino, M. Busso, S. Masera, O. Straniero, P. de Laverny, B. Plez, J. Isern, s-Process nucleosynthesis in carbon stars. Astrophys. J. 579(2), 817–831 (2002). https://doi.org/10.1086/342924. arXiv:astro-ph/0207245

    Article  ADS  Google Scholar 

  64. C. Abia, I. Domínguez, R. Gallino, M. Busso, O. Straniero, P. de Laverny, G. Wallerstein, Understanding AGB carbon star nucleosynthesis from observations. Publ. Astron. Soc. Aust. 20(4), 314–323 (2003). https://doi.org/10.1071/AS03021

    Article  ADS  Google Scholar 

  65. S. Bisterzo, R. Gallino, The effect of r-process enhancement in binary CEMP-s+r stars, in Nuclei in the Cosmos (2010), p. 184. https://doi.org/10.22323/1.100.0184

  66. S. Bisterzo, R. Gallino, O. Straniero, S. Cristallo, F. Käppeler, The s-process in low-metallicity stars—II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 418(1), 284–319 (2011). https://doi.org/10.1111/j.1365-2966.2011.19484.x. arXiv:1108.0500 [astro-ph.SR]

    Article  ADS  Google Scholar 

  67. S. Bisterzo, R. Gallino, O. Straniero, S. Cristallo, F. Käppeler, The s-process in low-metallicity stars—III. Individual analysis of CEMP-s and CEMP-s/r with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 422(1), 849–884 (2012). https://doi.org/10.1111/j.1365-2966.2012.20670.x. arXiv:1201.6198 [astro-ph.SR]

    Article  ADS  Google Scholar 

  68. N. Liu, M.R. Savina, A.M. Davis, R. Gallino, O. Straniero, F. Gyngard, M.J. Pellin, D.G. Willingham, N. Dauphas, M. Pignatari, S. Bisterzo, S. Cristallo, F. Herwig, Barium isotopic composition of mainstream silicon carbides from Murchison: constraints for s-process nucleosynthesis in asymptotic giant branch stars. Astrophys. J. 786(1), 66 (2014). https://doi.org/10.1088/0004-637X/786/1/66. arXiv:1403.4336 [astro-ph.SR]

    Article  ADS  Google Scholar 

  69. N. Liu, R. Gallino, S. Bisterzo, A.M. Davis, M.R. Savina, M.J. Pellin, The \(^{13}\)C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains. Astrophys. J. 788(2), 163 (2014). https://doi.org/10.1088/0004-637X/788/2/163. arXiv:1405.1441 [astro-ph.SR]

    Article  ADS  Google Scholar 

  70. N. Liu, M.R. Savina, R. Gallino, A.M. Davis, S. Bisterzo, F. Gyngard, F. Käppeler, S. Cristallo, N. Dauphas, M.J. Pellin, I. Dillmann, Correlated strontium and barium isotopic compositions of acid-cleaned single mainstream silicon carbides from Murchison. Astrophys. J. 803(1), 12 (2015). https://doi.org/10.1088/0004-637X/803/1/12. arXiv:1501.05883 [astro-ph.SR]

    Article  ADS  Google Scholar 

  71. R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi, M. Limongi, Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the S-process. Astrophys. J. 497(1), 388–403 (1998). https://doi.org/10.1086/305437

    Article  ADS  Google Scholar 

  72. C. Arlandini, F. Käppeler, K. Wisshak, R. Gallino, M. Lugaro, M. Busso, O. Straniero, Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525(2), 886–900 (1999). https://doi.org/10.1086/307938

    Article  ADS  Google Scholar 

  73. F. Käppeler, Astrophysics studies at n_TOF (CERN), in APS Division of Nuclear Physics Meeting Abstracts. APS Meeting Abstracts, American Physical Society, Division of Nuclear Physics Fall Meeting, October 30 - November 1, 2003, Tucson, Arizona (2003), p. 009

  74. C. Borcea, P. Cennini, A. Ferrari, Y. Kadi, V. Lacoste, E. Radermacher, V. Vlachoudis, CERN n_TOF facility and its possible impact on producing nuclei with large neutron excess. Nucl. Phys. A 701(1), 133–136 (2002). https://doi.org/10.1016/S0375-9474(01)01561-5

    Article  ADS  Google Scholar 

  75. C. Borcea, S. Buono, P. Cennini, M. Dahlfors, V. Dangendorf, A. Ferrari, G. Garcia-Munoz, Y. Kadi, V. Lacoste, R. Nolte, E. Radermacher, C. Rubbia, F. Saldana, V. Vlachoudis, T. Weierganz, L. Zanini, First results from the neutron facility (nTOF) at CERN. Appl. Phys. A: Mater. Sci. Process. 74, 55–57 (2002). https://doi.org/10.1007/s003390201610

    Article  Google Scholar 

  76. U. Abbondanno, G. Aerts, H. Alvarez, S. Andriamonje, A. Angelopoulos, P. Assimakopoulos, C. Bacri, G. Badurek, P. Baumann, F. Bečvář, H. Beer, J. Benlliure, B. Berthier, E. Berthoumieux, S. Boffi, C. Borcea, E. Boscolo-Marchi, N. Bustreo, F. Calvino, D. Cano-Ott, R. Capote, P. Carlson, P. Cennini, V. Chepel, E. Chiaveri, N. Colonna, G. Cortes, D. Cortina, A. Couture, J. Cox, S. Dababneh, M. Dahlfors, S. David, R. Dolfini, C. Domingo, I. Duran-Escribano, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari, L. Ferreira-Lourenco, R. Ferreiramarques, H. Frais-Koelbl, W. Furman, Y. Giomataris, I. Goncalves, E. Gonzalez-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, F. Gunsing, R. Haight, M. Heil, A. Herrera-Martinez, K. Ioannides, N. Janeva, E. Jericha, F. Käppeler, Y. Kadi, D. Karamanis, A. Kelic, V. Ketlerov, G. Kitis, P. Koehler, V. Konovalov, E. Kossionides, V. Lacoste, H. Leeb, A. Lindote, I. Lopes, M. Lozano, S. Lukic, S. Markov, S. Marrone, J. Martinez-Val, P. Mastinu, A. Mengoni, P. Milazzo, E. Minguez, A. Molina-Coballes, C. Moreau, F. Neves, H. Oberhummer, S. O’Brien, J. Pancin, C. Paradela, A. Pavlik, P. Pavlopoulos, A. Perez-Parra, J. Perlado, L. Perrot, V. Peskov, R. Plag, A. Plompen, A. Plukis, A. Poch, A. Policarpo, C. Pretel, J. Quesada, M. Radici, S. Raman, W. Rapp, R. Reifarth, F. Rejmund, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, J. Salgado, E. Savvidis, C. Stephan, G. Tagliente, J. Tain, C. Tapia, L. Tassan-Got, L. Tavora, R. Terlizzi, M. Terrani, N. Tsangas, G. Vannini, P. Vaz, A. Ventura, D. Villamarin-Fernandez, M. Vincente-Vincente, V. Vlachoudis, R. Vlastou, F. Voss, H. Wendler, M. Wiescher, K. Wisshak, L. Zanini, Improved accuracy (n, \(\gamma \)) measurements at N_TOF, in Capture Gamma-Ray Spectroscopy and Related Topics (2003), pp. 641–644. https://doi.org/10.1142/9789812795151_0084

  77. Z.Y. Bao, H. Beer, F. Käppeler, F. Voss, K. Wisshak, T. Rauscher, Neutron cross sections for nucleosynthesis studies. At. Data Nucl. Data Tables 76(1), 70–154 (2000). https://doi.org/10.1006/adnd.2000.0838

    Article  ADS  Google Scholar 

  78. I. Dillmann, M. Heil, F. Käppeler, R. Plag, T. Rauscher, F.-K. Thielemann, KADoNiS—the Karlsruhe astrophysical database of nucleosynthesis in stars, in Capture Gamma-Ray Spectroscopy and Related Topics. American Institute of Physics Conference Series, vol. 819, ed. by A. Woehr, A. Aprahamian (2006), pp. 123–127. https://doi.org/10.1063/1.2187846

  79. I. Dillmann, T. Szücs, R. Plag, Z. Fülöp, F. Käppeler, A. Mengoni, T. Rauscher, The Karlsruhe astrophysical database of nucleosynthesis in stars project—status and prospects. Nucl. Data Sheets 120, 171–174 (2014). https://doi.org/10.1016/j.nds.2014.07.038. arXiv:1408.3688 [astro-ph.SR]

    Article  ADS  Google Scholar 

  80. P.A. Denissenkov, D.A. VandenBerg, Canonical extra mixing in low-mass red giants. Astrophys. J. 593(1), 509–523 (2003). https://doi.org/10.1086/376410

    Article  ADS  Google Scholar 

  81. F. Herwig, N. Langer, M. Lugaro, The s-process in rotating asymptotic giant branch stars. Astrophys. J. 593(2), 1056–1073 (2003). https://doi.org/10.1086/376726

    Article  ADS  Google Scholar 

  82. F. Herwig, N. Langer, M. Lugaro, The s-process in rotating AGB stars, in: Planetary Nebulae: Their Evolution and Role in the Universe, vol. 209, ed. S. Kwok, M. Dopita, R. Sutherland (2003), p. 99. https://doi.org/10.48550/arXiv.astro-ph/0202067

  83. K.K. Gilroy, Carbon isotope ratios and lithium abundances in open cluster giants. Astrophys. J. 347, 835 (1989). https://doi.org/10.1086/168173

    Article  ADS  Google Scholar 

  84. K.K. Gilroy, J.A. Brown, Carbon isotope ratios along the giant branch of M67. Astrophys. J. 371, 578 (1991). https://doi.org/10.1086/169922

    Article  ADS  Google Scholar 

  85. C. Charbonnel, Clues for non-standard mixing on the red giant branch from 12C/13C and 12C/14N ratios in evolved stars. Astron. Astrophys. 282, 811–820 (1994)

    ADS  Google Scholar 

  86. P.P. Eggleton, D.S.P. Dearborn, J.C. Lattanzio, Deep mixing of \(^{3}\)He: reconciling big bang and stellar nucleosynthesis. Science 314(5805), 1580 (2006). https://doi.org/10.1126/science.1133065. arXiv:astro-ph/0611039

    Article  ADS  Google Scholar 

  87. C. Pilachowski, C. Sneden, K. Hinkle, R. Joyce, Carbon isotope ratios from the first overtone CO bands in metal-poor giants. Astron. J. 114, 819–824 (1997). https://doi.org/10.1086/118515

    Article  ADS  Google Scholar 

  88. C. Charbonnel, N. Lagarde, P. Eggenberger, Effects of rotation and thermohaline mixing in red giant stars, in Red Giants as Probes of the Structure and Evolution of the Milky Way. Astrophysics and Space Science Proceedings, vol. 26 (2012), p. 115. https://doi.org/10.1007/978-3-642-18418-5_12

  89. E. Matrozis, R.J. Stancliffe, Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment. Astron. Astrophys. 606, 55 (2017). https://doi.org/10.1051/0004-6361/201731272

    Article  ADS  Google Scholar 

  90. P.A. Denissenkov, W.J. Merryfield, Thermohaline mixing: does it really govern the atmospheric chemical composition of low-mass red giants? Astrophys. J. Lett. 727(1), 8 (2011). https://doi.org/10.1088/2041-8205/727/1/L8. arXiv:1011.2191 [astro-ph.SR]

    Article  ADS  Google Scholar 

  91. S. Palmerini, M. La Cognata, S. Cristallo, M. Busso, Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys. J. 729(1), 3 (2011). https://doi.org/10.1088/0004-637X/729/1/3. arXiv:1011.3948 [astro-ph.SR]

    Article  ADS  Google Scholar 

  92. S. Palmerini, S. Cristallo, M. Busso, C. Abia, S. Uttenthaler, L. Gialanella, E. Maiorca, Deep mixing in evolved stars. II. Interpreting Li abundances in red giant branch and asymptotic giant branch stars. Astrophys. J. 741(1), 26 (2011). https://doi.org/10.1088/0004-637X/741/1/26. arXiv:1107.2844 [astro-ph.SR]

    Article  ADS  Google Scholar 

  93. G. Michaud, The lithium abundance gap in the Hyades F stars: the signature of diffusion. Astrophys. J. 302, 650 (1986). https://doi.org/10.1086/164025

    Article  ADS  Google Scholar 

  94. C. Charbonnel, S. Vauclair, New constraints on the rotation-induced mixing in stars, from lithium observations in main sequence F-type stars and subgiants. Astron. Astrophys. 265, 55–64 (1992)

    ADS  Google Scholar 

  95. L. Piersanti, S. Cristallo, O. Straniero, The effects of rotation on s-process nucleosynthesis in asymptotic giant branch stars. Astrophys. J. 774(2), 98 (2013). https://doi.org/10.1088/0004-637X/774/2/98

    Article  ADS  Google Scholar 

  96. C. Charbonnel, J.-P. Zahn, Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants. Astron. Astrophys. 467(1), 15–18 (2007). https://doi.org/10.1051/0004-6361:20077274. arXiv:astro-ph/0703302

    Article  Google Scholar 

  97. C. Charbonnel, N. Lagarde, Thermohaline instability and rotation-induced mixing. I. Low- and intermediate-mass solar metallicity stars up to the end of the AGB. Astron. Astrophys. 522, 10 (2010). https://doi.org/10.1051/0004-6361/201014432. arXiv:1006.5359 [astro-ph.SR]

    Article  ADS  Google Scholar 

  98. P.A. Denissenkov, C.A. Tout, Partial mixing and formation of the \(^{13}\)C pocket by internal gravity waves in asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 340(3), 722–732 (2003). https://doi.org/10.1046/j.1365-8711.2003.06284.x

    Article  ADS  Google Scholar 

  99. U. Battino, A. Tattersall, C. Lederer-Woods, F. Herwig, P. Denissenkov, R. Hirschi, R. Trappitsch, J. W. den Hartogh, M. Pignatari, NuGrid Collaboration, NuGrid stellar data set—III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Mon. Not. R. Astron. Soc. 489(1), 1082–1098 (2019). https://doi.org/10.1093/mnras/stz2158. arXiv:1906.01952 [astro-ph.SR]

  100. Mestel, L.: Stellar Magnetism. Oxford University Press (2012)

  101. D.M. Bowman, S. Burssens, M.G. Pedersen, C. Johnston, C. Aerts, B. Buysschaert, M. Michielsen, A. Tkachenko, T.M. Rogers, P.V.F. Edelmann, R.P. Ratnasingam, S. Simón-Díaz, N. Castro, E. Moravveji, B.J.S. Pope, T.R. White, P. De Cat, Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 3, 760–765 (2019). https://doi.org/10.1038/s41550-019-0768-1

    Article  ADS  Google Scholar 

  102. W.H.T. Vlemmings, Magnetic fields around (post-)AGB stars and (Pre-)Planetary Nebulae, in Asymmetric Planetary Nebulae 5 Conference, ed. by A.A. Zijlstra, F. Lykou, I. McDonald, E. Lagadec (2011), p. 89. https://doi.org/10.48550/arXiv.1009.4067

  103. W.H.T. Vlemmings, E.M.L. Humphreys, R. Franco-Hernández, Magnetic fields in evolved stars: imaging the polarized emission of high-frequency SiO masers. Astrophys. J. 728(2), 149 (2011). https://doi.org/10.1088/0004-637X/728/2/149

    Article  ADS  Google Scholar 

  104. W. Vlemmings, Magnetic fields during the evolution towards planetary nebulae, in IAU Symposium, vol. 283 (2012), pp. 176–179. https://doi.org/10.1017/S1743921312010903

  105. M. Busso, G.J. Wasserburg, K.M. Nollett, A. Calandra, Can extra mixing in RGB and AGB stars be attributed to magnetic mechanisms? Astrophys. J. 671(1), 802–810 (2007). https://doi.org/10.1086/522616

    Article  ADS  Google Scholar 

  106. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). https://doi.org/10.1086/146579

    Article  ADS  Google Scholar 

  107. E.N. Parker, The hydrodynamic treatment of the expanding solar corona. Astrophys. J. 132, 175 (1960). https://doi.org/10.1086/146910

    Article  ADS  MathSciNet  Google Scholar 

  108. J. Nordhaus, M. Busso, G.J. Wasserburg, E.G. Blackman, S. Palmerini, Magnetic mixing in red giant and asymptotic giant branch stars. Astrophys. J. Lett. 684(1), 29 (2008). https://doi.org/10.1086/591963

    Article  ADS  Google Scholar 

  109. M.C. Nucci, M. Busso, Magnetohydrodynamics and deep mixing in evolved stars. I. Two- and three-dimensional analytical models for the asymptotic giant branch. Astrophys. J. 787(2), 141 (2014). https://doi.org/10.1088/0004-637X/787/2/141. arXiv:1404.2503 [astro-ph.SR]

    Article  ADS  Google Scholar 

  110. N. Soker, J.H. Kastner, Magnetic flares on asymptotic giant branch stars. Astrophys. J. 592(1), 498–503 (2003). https://doi.org/10.1086/375686

    Article  ADS  Google Scholar 

  111. S. Jordan, K. Werner, S.J. O’Toole, Discovery of magnetic fields in central stars of planetary nebulae. Astron. Astrophys. 432(1), 273–279 (2005). https://doi.org/10.1051/0004-6361:20041993. arXiv:astro-ph/0501040

    Article  ADS  Google Scholar 

  112. F. Herpin, A. Baudry, C. Thum, D. Morris, H. Wiesemeyer, Full polarization study of SiO masers at 86 GHz. Astron. Astrophys. 450(2), 667–680 (2006). https://doi.org/10.1051/0004-6361:20054255

    Article  ADS  Google Scholar 

  113. A.J. Kemball, Stellar masers, circumstellar envelopes and supernova remnants, in Astrophysical Masers and Their Environments, vol. 242, ed. by J.M. Chapman, W.A. Baan (2007), pp. 236–245. https://doi.org/10.1017/S1743921307013063

  114. S. Bagnulo, J.D. Landstreet, Discovery of six new strongly magnetic white dwarfs in the 20 pc local population. Astron. Astrophys. 643, 134 (2020). https://doi.org/10.1051/0004-6361/202038565

    Article  ADS  Google Scholar 

  115. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7(1), 3 (2010). https://doi.org/10.12942/lrsp-2010-3

    Article  ADS  Google Scholar 

  116. O. Trippella, M. Busso, S. Palmerini, E. Maiorca, M.C. Nucci, s-Processing in AGB stars revisited. II. Enhanced 13C production through MHD-induced mixing. Astrophys. J. 818(2), 125 (2016). https://doi.org/10.3847/0004-637X/818/2/125. arXiv:1512.06777 [astro-ph.SR]

    Article  ADS  Google Scholar 

  117. D. Vescovi, S. Cristallo, M. Busso, N. Liu, Magnetic-buoyancy-induced Mixing in AGB Stars: presolar SiC grains. Astrophys. J. Lett. 897(2), 25 (2020). https://doi.org/10.3847/2041-8213/ab9fa1. arXiv:2006.13729 [astro-ph.SR]

    Article  ADS  Google Scholar 

  118. M. Busso, D. Vescovi, S. Palmerini, S. Cristallo, V. Antonuccio-Delogu, s-processing in AGB stars revisited. III. Neutron captures from MHD mixing at different metallicities and observational constraints. Astrophys. J. 908(1), 55 (2021). https://doi.org/10.3847/1538-4357/abca8e. arXiv:2011.07469 [astro-ph.SR]

    Article  ADS  Google Scholar 

  119. S. Palmerini, M. Busso, D. Vescovi, E. Naselli, A. Pidatella, R. Mucciola, S. Cristallo, D. Mascali, A. Mengoni, S. Simonucci, S. Taioli, Presolar grain isotopic ratios as constraints to nuclear and stellar parameters of asymptotic giant branch star nucleosynthesis. Astrophys. J. 921(1), 7 (2021). https://doi.org/10.3847/1538-4357/ac1786. arXiv:2107.12037 [astro-ph.SR]

    Article  ADS  Google Scholar 

  120. M. Busso, K.-L. Kratz, S. Palmerini, W. Akram, V. Antonuccio-Delogu, Front. Astron. Space Sci. (2022) (in press). https://doi.org/10.3389/fspas.2022.956633

  121. D. Vescovi, S. Cristallo, S. Palmerini, C. Abia, M. Busso, Magnetic-buoyancy-induced mixing in AGB stars: fluorine nucleosynthesis at different metallicities. Astron. Astrophys. 652, 100 (2021). https://doi.org/10.1051/0004-6361/202141173. arXiv:2106.08241 [astro-ph.SR]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.B is grateful to the INFN Section of Perugia, to its director, dr. Patrizia Cenci, and to the authorities of the Institute for continued support after retirement. Useful discussions with R. Gallino on the subjects of our longstanding collaboration and friendship and on our contributions to this volume are gratefully recognized. We are particularly indebted to the referees for a very careful analysis and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Busso Maurizio.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurizio, B., Sara, P. Production of n-rich nuclei in red giant stars. Eur. Phys. J. A 59, 68 (2023). https://doi.org/10.1140/epja/s10050-023-00988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00988-8

Navigation