Skip to main content

Advertisement

Log in

Fusion dynamics of spherical and deformed projectiles with hexadecapole deformed target nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The quadrupole (\(\beta _{\lambda =2}\)) deformation and corresponding cold and hot optimum orientations of the nuclei play an important role in the synthesis of new nuclear entity. Consequently, a comprehensive knowledge is required to understand the relevance of higher-order deformed nuclei in the nuclear fusion dynamics. In the present work, the hexadecapole (\(\beta _{\lambda =2,4}\)) deformed nuclei of different shapes, i.e. \(\beta _2^+\beta _4^+\) (\(^{147-150,152,154}\)Sm), \(\beta _2^+\beta _4^-\) (\(^{172,174,176,178,180,182}\)Yb), \(\beta _2^-\beta _4^+\) (\(^{40,43,55,77,82}\)Sc) and \(\beta _2^-\beta _4^-\) (\(^{70,72-74}\)Ge) are taken into consideration as target of \(^{16}\)O (sph.), \(^{48}\)Ca (sph.), \(^{48}\)Ar (\(\beta _2^-\)) and \(^{62}\)Fe (\(\beta _2^+\)) induced reactions. For these selected choices of projectile-target (p-t) combinations, the impact of ± signs and hot/cold optimum orientations of higher-order deformation (up to \(\beta _4\)) has been investigated, in reference to that \(\beta _2^{\pm }\) deformation. The above analysis has been discussed in terms of fusion barrier characteristics (barrier height \(V_B\) and barrier position \(R_B\)), which is sensitive towards the deformation and orientation degree of freedom. Furthermore, the corresponding effects have been analyzed in the calculation of fusion cross-section \(\sigma _{fus}\), with respect to the center of mass energy (\(E_{c.m.}\)) lying across the Coulomb barrier. Therefore, the nuclear shape for targets \(\beta _2^{\pm }\beta _4^+\) expands relatively larger, and consequently the radius which enhances the fusion cross-sectional area as compared to that of \(\beta _2^{\pm }\) deformation. In contrast to the above case, the \(\beta _2^{\pm }\beta _4^-\) shapes have been found to hinder the fusion, mainly at the below- and near-barrier regions. Subsequently, the present work gives the relevance of the expanded and compressed shapes of hexadecapole deformed nuclei in the nuclear fusion dynamics for the considered choices of p-t combinations at the low-energy regime. Besides, the available experimental data for \(^{16}\)O+\(^{147-150,152,154}\)Sm p-t combinations, here ‘Sm’ isotopes are \(\beta _4^+\)-deformed, has been addressed by integrating \(\sigma _{fus}\) over all orientations and deformations up to \(\beta _4\), over a given range of \(E_{c.m.}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data that support the findings of this study are included in the manuscript.]

References

  1. M. Seiwert et al., Phys. Rev. C 29, 2 (1984)

    Google Scholar 

  2. R.K. Gupta, N. Singh, M. Manhas, Phys. Rev. C 70, 034608 (2004)

    Article  ADS  Google Scholar 

  3. V. Yu, Denisov and N. A. Pilipenko, Phys. Rev. C 76, 014602 (2007)

  4. M. Ismail, I.A.M. Abdul-Magead, Nucl. Phys. A 888, 34–43 (2012)

  5. D. Jain, R. Kumar, M.K. Sharma, Nucl. Phys. A 915, 106–124 (2013)

    Article  ADS  Google Scholar 

  6. M. Ismail et al., Can. J. Phys. 92, 1411–1418 (2014)

    Article  ADS  Google Scholar 

  7. M. Ismail et al., IOSR-JAP 9(3 Ver. I), 67–81 (2017)

    Article  MathSciNet  Google Scholar 

  8. K. Hagino, Phys. Rev. C 98, 014607 (2018)

    Article  ADS  Google Scholar 

  9. G. Kaur, K. Hagino, N. Rowley, Phys. Rev. C 97, 064606 (2018)

    Article  ADS  Google Scholar 

  10. D.R. Bés, Z. Szymanski, Nucl. Phys. 28, 42–62 (1961)

    Article  Google Scholar 

  11. C.W. Towsley et al., Nucl. Phys. A 204, 574–592 (1973)

    Article  ADS  Google Scholar 

  12. R.W. Ibbotson et al., Phys. Rev. Lett. 80, 10 (1998)

    Article  Google Scholar 

  13. E. Nacher et al., Phys. Rev. Lett. 92, 23 (2004)

    Article  Google Scholar 

  14. A. Gorgen, W. Korten, J. Phys. G: Nucl. Part. Phys. 43, 024002 (2016)

    Article  ADS  Google Scholar 

  15. N.T. Jarallah, Energy Procedia 157, 276–282 (2019)

    Article  Google Scholar 

  16. R.G. Stokstad et al., Phys. Rev. C 21, 2427 (1980)

    Article  ADS  Google Scholar 

  17. K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004)

    Article  ADS  Google Scholar 

  18. Y.T. Oganessian et al., Phys. Rev. C 70, 064609 (2004)

    Article  ADS  Google Scholar 

  19. Y.T. Oganessian et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  20. K. Morita et al., J. Phys. Soc. Jpn. 76, 043201 (2007)

    Article  ADS  Google Scholar 

  21. A. Sandulescu et al., Phys. Lett. B 60, 225 (1976)

    Article  ADS  Google Scholar 

  22. R.K. Gupta, A. Sandulescu, W. Greiner, Phys. Lett. B 67, 257 (1977)

    Article  ADS  Google Scholar 

  23. R.K. Gupta, C. Parvulescu, A. Sandulescu, W. Greiner, Z. Phys. A 283, 217 (1977)

    Article  ADS  Google Scholar 

  24. R. K. Gupta, A. Sandulescu and W. Greiner, Z. Natureforsch. 32a, 704 (1977)

  25. R.K. Gupta et al., J. Phys. G: Nucl. Part. Phys. 31, 631–644 (2005)

    Article  ADS  Google Scholar 

  26. H. Faust et al., J. Phys. G: Nucl. Part. Phys. 4, 247 (1978)

    Article  ADS  Google Scholar 

  27. B.S. Nara Singh, V. Nanal, R.G. Pillay, Parmana. J. Phys. 61(3), 507–515 (2003)

    Article  ADS  Google Scholar 

  28. Y.K. Gupta et al., Phys. Lett. B 806, 135473 (2020)

    Article  Google Scholar 

  29. A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 5 (1982)

    Article  Google Scholar 

  30. J.O.F. Niello et al., Phys. Rev. C 43, 5 (1991)

    Article  Google Scholar 

  31. V.V. Sargsyan et al., Phys. Rev. C 84, 064614 (2011)

    Article  ADS  Google Scholar 

  32. S.A. Alavi, V. Dehghani, Phys. Rev. C 95, 054602 (2017)

    Article  ADS  Google Scholar 

  33. G. Kaur, K. Sandhu, M.K. Sharma, Nucl. Phys. A 971, 95–112 (2018)

    Article  ADS  Google Scholar 

  34. R.C. Lemmon et al., Phys. Lett. B 316, 32–37 (1993)

    Article  ADS  Google Scholar 

  35. K.-S. Choi et al., Phys. Rev. C 103, 034611 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401–61 (1998)

    Article  ADS  Google Scholar 

  37. I.I. Gontchar et al., Phys. Rev. C 65, 034610 (2002)

    Article  ADS  Google Scholar 

  38. I.I. Gontchar et al., Phys. Rev. C 73, 034610 (2006)

    Article  ADS  Google Scholar 

  39. M.S. Gautam, K. Vinod, H. Kumar, Braz. J. Phys. 47, 461–472 (2017)

    Article  ADS  Google Scholar 

  40. K. Hagino, K. Ogata, A.M. Moro, Prog. Part. Nucl. Phys. 125, 103951 (2022)

    Article  Google Scholar 

  41. N. Wang et al., Phys. Rev. C 74, 044604 (2006)

    Article  ADS  Google Scholar 

  42. K. Nishio et al., Phys. Rev. C 77, 064607 (2008)

    Article  ADS  Google Scholar 

  43. M. Ismail, W.M. Seif, Phys. Rev. C 81, 034607 (2010)

    Article  ADS  Google Scholar 

  44. A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk 26, 14 (1952)

    Google Scholar 

  45. A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)

    Google Scholar 

  46. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  47. P. Möller et al., At. Data Nucl. Data Tables 109–110, 1–204 (2016)

    Article  ADS  Google Scholar 

  48. G.A. Leander, Y.S. Chen, Phys. Rev. C 37, 6 (1988)

    Google Scholar 

  49. N.T. Jarallah, Energy Procedia 157, 276–282 (2019)

    Article  Google Scholar 

  50. J. Blocki et al., Ann. Phys. NY 105, 427 (1977)

    Article  ADS  Google Scholar 

  51. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  52. H. Sharma, Study of fusion reactions using different proximity potentials with deformation up to hexadecapole [Master’s dissertation, Thapar Institute of Engineering & Technology], (2021)

  53. V.Y. Denisov, Phys. Lett. B 526, 315 (2002)

    Article  ADS  Google Scholar 

  54. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064608 (2010)

    Article  ADS  Google Scholar 

  55. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  56. P. Möller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  57. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)

    Article  ADS  Google Scholar 

  58. R.G. Stokstad et al., Phys. Rev. C 21, 2427 (1980)

    Article  ADS  Google Scholar 

  59. D.E. DiGregorio et al., Phys. Rev. C 39, 516 (1989)

    Article  ADS  Google Scholar 

  60. J.R. Leigh et al., Phys. Rev. C 52, 3151 (1995)

    Article  ADS  Google Scholar 

  61. B. Erol, A.H. Yılmaz, AIP Conf. Proc. 1935, 100004 (2018)

    Article  Google Scholar 

  62. B. Pritychenko et al., At. Data Nucl. Data Tables 107, 1–139 (2016)

  63. M. Ismail, W.M. Seif, Nucl. Phys. A 872, 25–41 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research projects of Science and Engineering Research Board (SERB), File Nos. CRG/2021/001229 and CRG/2021 /001144, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Jain.

Additional information

Communicated by Alexis Diaz-Torres.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Jain, S., Amritpal et al. Fusion dynamics of spherical and deformed projectiles with hexadecapole deformed target nuclei. Eur. Phys. J. A 59, 71 (2023). https://doi.org/10.1140/epja/s10050-023-00981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00981-1

Navigation