Abstract
The quadrupole (\(\beta _{\lambda =2}\)) deformation and corresponding cold and hot optimum orientations of the nuclei play an important role in the synthesis of new nuclear entity. Consequently, a comprehensive knowledge is required to understand the relevance of higher-order deformed nuclei in the nuclear fusion dynamics. In the present work, the hexadecapole (\(\beta _{\lambda =2,4}\)) deformed nuclei of different shapes, i.e. \(\beta _2^+\beta _4^+\) (\(^{147-150,152,154}\)Sm), \(\beta _2^+\beta _4^-\) (\(^{172,174,176,178,180,182}\)Yb), \(\beta _2^-\beta _4^+\) (\(^{40,43,55,77,82}\)Sc) and \(\beta _2^-\beta _4^-\) (\(^{70,72-74}\)Ge) are taken into consideration as target of \(^{16}\)O (sph.), \(^{48}\)Ca (sph.), \(^{48}\)Ar (\(\beta _2^-\)) and \(^{62}\)Fe (\(\beta _2^+\)) induced reactions. For these selected choices of projectile-target (p-t) combinations, the impact of ± signs and hot/cold optimum orientations of higher-order deformation (up to \(\beta _4\)) has been investigated, in reference to that \(\beta _2^{\pm }\) deformation. The above analysis has been discussed in terms of fusion barrier characteristics (barrier height \(V_B\) and barrier position \(R_B\)), which is sensitive towards the deformation and orientation degree of freedom. Furthermore, the corresponding effects have been analyzed in the calculation of fusion cross-section \(\sigma _{fus}\), with respect to the center of mass energy (\(E_{c.m.}\)) lying across the Coulomb barrier. Therefore, the nuclear shape for targets \(\beta _2^{\pm }\beta _4^+\) expands relatively larger, and consequently the radius which enhances the fusion cross-sectional area as compared to that of \(\beta _2^{\pm }\) deformation. In contrast to the above case, the \(\beta _2^{\pm }\beta _4^-\) shapes have been found to hinder the fusion, mainly at the below- and near-barrier regions. Subsequently, the present work gives the relevance of the expanded and compressed shapes of hexadecapole deformed nuclei in the nuclear fusion dynamics for the considered choices of p-t combinations at the low-energy regime. Besides, the available experimental data for \(^{16}\)O+\(^{147-150,152,154}\)Sm p-t combinations, here ‘Sm’ isotopes are \(\beta _4^+\)-deformed, has been addressed by integrating \(\sigma _{fus}\) over all orientations and deformations up to \(\beta _4\), over a given range of \(E_{c.m.}\).
Similar content being viewed by others
Data Availability Statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data that support the findings of this study are included in the manuscript.]
References
M. Seiwert et al., Phys. Rev. C 29, 2 (1984)
R.K. Gupta, N. Singh, M. Manhas, Phys. Rev. C 70, 034608 (2004)
V. Yu, Denisov and N. A. Pilipenko, Phys. Rev. C 76, 014602 (2007)
M. Ismail, I.A.M. Abdul-Magead, Nucl. Phys. A 888, 34–43 (2012)
D. Jain, R. Kumar, M.K. Sharma, Nucl. Phys. A 915, 106–124 (2013)
M. Ismail et al., Can. J. Phys. 92, 1411–1418 (2014)
M. Ismail et al., IOSR-JAP 9(3 Ver. I), 67–81 (2017)
K. Hagino, Phys. Rev. C 98, 014607 (2018)
G. Kaur, K. Hagino, N. Rowley, Phys. Rev. C 97, 064606 (2018)
D.R. Bés, Z. Szymanski, Nucl. Phys. 28, 42–62 (1961)
C.W. Towsley et al., Nucl. Phys. A 204, 574–592 (1973)
R.W. Ibbotson et al., Phys. Rev. Lett. 80, 10 (1998)
E. Nacher et al., Phys. Rev. Lett. 92, 23 (2004)
A. Gorgen, W. Korten, J. Phys. G: Nucl. Part. Phys. 43, 024002 (2016)
N.T. Jarallah, Energy Procedia 157, 276–282 (2019)
R.G. Stokstad et al., Phys. Rev. C 21, 2427 (1980)
K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004)
Y.T. Oganessian et al., Phys. Rev. C 70, 064609 (2004)
Y.T. Oganessian et al., Phys. Rev. C 74, 044602 (2006)
K. Morita et al., J. Phys. Soc. Jpn. 76, 043201 (2007)
A. Sandulescu et al., Phys. Lett. B 60, 225 (1976)
R.K. Gupta, A. Sandulescu, W. Greiner, Phys. Lett. B 67, 257 (1977)
R.K. Gupta, C. Parvulescu, A. Sandulescu, W. Greiner, Z. Phys. A 283, 217 (1977)
R. K. Gupta, A. Sandulescu and W. Greiner, Z. Natureforsch. 32a, 704 (1977)
R.K. Gupta et al., J. Phys. G: Nucl. Part. Phys. 31, 631–644 (2005)
H. Faust et al., J. Phys. G: Nucl. Part. Phys. 4, 247 (1978)
B.S. Nara Singh, V. Nanal, R.G. Pillay, Parmana. J. Phys. 61(3), 507–515 (2003)
Y.K. Gupta et al., Phys. Lett. B 806, 135473 (2020)
A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 5 (1982)
J.O.F. Niello et al., Phys. Rev. C 43, 5 (1991)
V.V. Sargsyan et al., Phys. Rev. C 84, 064614 (2011)
S.A. Alavi, V. Dehghani, Phys. Rev. C 95, 054602 (2017)
G. Kaur, K. Sandhu, M.K. Sharma, Nucl. Phys. A 971, 95–112 (2018)
R.C. Lemmon et al., Phys. Lett. B 316, 32–37 (1993)
K.-S. Choi et al., Phys. Rev. C 103, 034611 (2021)
M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401–61 (1998)
I.I. Gontchar et al., Phys. Rev. C 65, 034610 (2002)
I.I. Gontchar et al., Phys. Rev. C 73, 034610 (2006)
M.S. Gautam, K. Vinod, H. Kumar, Braz. J. Phys. 47, 461–472 (2017)
K. Hagino, K. Ogata, A.M. Moro, Prog. Part. Nucl. Phys. 125, 103951 (2022)
N. Wang et al., Phys. Rev. C 74, 044604 (2006)
K. Nishio et al., Phys. Rev. C 77, 064607 (2008)
M. Ismail, W.M. Seif, Phys. Rev. C 81, 034607 (2010)
A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk 26, 14 (1952)
A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)
D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)
P. Möller et al., At. Data Nucl. Data Tables 109–110, 1–204 (2016)
G.A. Leander, Y.S. Chen, Phys. Rev. C 37, 6 (1988)
N.T. Jarallah, Energy Procedia 157, 276–282 (2019)
J. Blocki et al., Ann. Phys. NY 105, 427 (1977)
C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)
H. Sharma, Study of fusion reactions using different proximity potentials with deformation up to hexadecapole [Master’s dissertation, Thapar Institute of Engineering & Technology], (2021)
V.Y. Denisov, Phys. Lett. B 526, 315 (2002)
I. Dutt, R.K. Puri, Phys. Rev. C 81, 064608 (2010)
I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)
P. Möller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)
W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)
R.G. Stokstad et al., Phys. Rev. C 21, 2427 (1980)
D.E. DiGregorio et al., Phys. Rev. C 39, 516 (1989)
J.R. Leigh et al., Phys. Rev. C 52, 3151 (1995)
B. Erol, A.H. Yılmaz, AIP Conf. Proc. 1935, 100004 (2018)
B. Pritychenko et al., At. Data Nucl. Data Tables 107, 1–139 (2016)
M. Ismail, W.M. Seif, Nucl. Phys. A 872, 25–41 (2011)
Acknowledgements
The research projects of Science and Engineering Research Board (SERB), File Nos. CRG/2021/001229 and CRG/2021 /001144, are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alexis Diaz-Torres.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sharma, H., Jain, S., Amritpal et al. Fusion dynamics of spherical and deformed projectiles with hexadecapole deformed target nuclei. Eur. Phys. J. A 59, 71 (2023). https://doi.org/10.1140/epja/s10050-023-00981-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/s10050-023-00981-1