Skip to main content
Log in

Measurements of high-n transitions in intermediate mass kaonic atoms by SIDDHARTA-2 at DA\(\mathrm {\Phi }\)NE

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The SIDDHARTA-2 experiment installed at the DA\(\mathrm {\Phi }\)NE collider of INFN-LNF performed, for the first time, measurements of high-n transitions in intermediate mass kaonic atoms during the data taking campaigns of 2021 and 2022. Kaonic carbon, oxygen, nitrogen and aluminium transitions, which occur in the setup materials, were measured by using the kaons stopped in the gaseous helium target cell with aluminium frames and Kapton walls, and are reported in this paper. These new kaonic atoms measurements add valuable input to the kaonic atoms transitions data base, which is used as a reference for theories and models of the low-energy strong interaction between antikaon and nuclei. Moreover, these results pave the way for future dedicated kaonic atoms measurements through the whole periodic table and to a new era for the antikaon-nuclei studies at low energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available upon reasonable request from the corresponding authors].

References

  1. C.E. Wiegand, R.H. Pehl, Measurement of Kaonic X Rays from He-4. Phys. Rev. Lett. 27, 1410–1412 (1971). https://doi.org/10.1103/PhysRevLett.27.1410

    Article  ADS  Google Scholar 

  2. C. Batty et al., Measurement of kaonic and pionic X-rays from liquid helium. Nucl. Phys. A 326, 455–462 (1979). https://doi.org/10.1016/0375-9474(79)90403-2

    Article  ADS  Google Scholar 

  3. C. Batty et al., Measurement of kaonic X-rays from Li, LiH AND Be. Nucl. Phys. A 282, 487–492 (1977). https://doi.org/10.1016/0375-9474(77)90072-0

    Article  ADS  Google Scholar 

  4. G. Backenstoss et al., K- mass and K-polarizability from kaonic atoms. Phys. Lett. B 43, 431–436 (1973). https://doi.org/10.1016/0370-2693(73)90391-2

    Article  ADS  Google Scholar 

  5. G. Backenstoss et al., Intensities and strong interaction attenuation of kaonic X-rays. Nucl. Phys. B 73, 189–201 (1974). https://doi.org/10.1016/0550-3213(74)90014-5

    Article  ADS  Google Scholar 

  6. C. Batty et al., Measurement of strong interaction effects in kaonic atoms. Nucl. Phys. A 329, 407–428 (1979). https://doi.org/10.1016/0375-9474(79)90384-1

    Article  ADS  Google Scholar 

  7. P. Barnes et al., Measurement of kaonic X-rays from Al, Si, Ni and Cu. Nucl. Phys. A 231, 477–492 (1974). https://doi.org/10.1016/0375-9474(74)90511-9

    Article  ADS  Google Scholar 

  8. C. Wiegand, G. Godfrey, Measurements of x rays and \(\gamma \) rays from stopped kaons. Phys. Rev. A 9, 2282 (1974). https://doi.org/10.1103/PhysRevA.9.2282

    Article  ADS  Google Scholar 

  9. R. Kunselman, Kaon mass measurement from kaonic atom x-ray energies; the 4f–3d kaonic transition in chlorine. Phys. Lett. B 34, 485–487 (1971). https://doi.org/10.1016/0370-2693(71)90660-5

    Article  ADS  Google Scholar 

  10. R. Kunselman, Negative—kaon mass. Phys. Rev. C 9, 2469 (1974). https://doi.org/10.1103/PhysRevC.9.2469

    Article  ADS  Google Scholar 

  11. C. Batty et al., Nuclear quadrupole deformation effects on pionic and kaonic X-rays. Nucl. Phys. A 355, 383–402 (1981). https://doi.org/10.1016/0375-9474(81)90534-0

    Article  ADS  Google Scholar 

  12. S. Cheng et al., K-mass from kaonic atoms. Nucl. Phys. A 254, 381–395 (1975). https://doi.org/10.1016/0375-9474(75)90224-9

    Article  ADS  Google Scholar 

  13. C. Batty, E. Friedman, A. Gal, Strong interaction physics from hadronic atoms. Phys. Rep. 287, 385–445 (1997). https://doi.org/10.1016/S0370-1573(97)00011-2

    Article  ADS  Google Scholar 

  14. E. Friedman, A. Gal, C.J. Batty, Density dependent K-nuclear optical potentials from kaonic atoms. Nucl. Phys. A 579, 518–538 (1994). https://doi.org/10.1016/0375-9474(94)90921-0

    Article  ADS  Google Scholar 

  15. S. Okada et al., Precision measurement of the 3d—\(>\) 2p x-ray energy in kaonic He-4. Phys. Lett. B 653, 387–391 (2007). https://doi.org/10.1016/j.physletb.2007.08.032

    Article  ADS  Google Scholar 

  16. M. Iwasaki et al., Observation of Kaonic hydrogen \({K}_{\alpha }\) X rays. Phys. Rev. Lett. 78, 3067–3069 (1997). https://doi.org/10.1103/PhysRevLett.78.3067

    Article  ADS  Google Scholar 

  17. M. Bazzi et al., A new measurement of kaonic hydrogen X-rays. Phys. Lett. B 704(3), 113 (2011). https://doi.org/10.1016/j.physletb.2011.09.011

    Article  ADS  Google Scholar 

  18. J. Davies et al., Observation of kaonic hydrogen atom X-rays. Phys. Lett. B 83, 55–58 (1979). https://doi.org/10.1016/0370-2693(79)90887-6

    Article  ADS  Google Scholar 

  19. M. Izycki et al., Results of the search forK-series X-rays from kaonic hydrogen. Z Physik A 297, 11–15 (1980). https://doi.org/10.1007/BF01414238

    Article  ADS  Google Scholar 

  20. P. Bird et al., Kaonic hydrogen atom X-rays. Nucl. Phys. A 404, 482–494 (1983). https://doi.org/10.1016/0375-9474(83)90272-5

    Article  ADS  Google Scholar 

  21. A. Martin, Kaon-nucleon parameters. Nucl. Phys. B 179, 33–48 (1981). https://doi.org/10.1016/0550-3213(81)90247-9

    Article  ADS  Google Scholar 

  22. J. Kim, Low-Energy \({K}^{-}-p\) Interaction and Interpretation of the 1405-MeV \(Y_{0}^{}{}_{}{}^{*}\) Resonance as a \({\overline{K}}N\) Bound State. Phys. Rev. Lett. 14, 29–30 (1965). https://doi.org/10.1103/PhysRevLett.14.29

    Article  ADS  Google Scholar 

  23. M. Sakitt et al., Low-energy \({K}^{-}\)-meson interactions in hydrogen. Phys. Rev. 139, B719–B728 (1965). https://doi.org/10.1103/PhysRev.139.B719

    Article  Google Scholar 

  24. S. Baird et al., Measurements on exotic atoms of helium. Nucl. Phys. A 392, 297–310 (1983). https://doi.org/10.1016/0375-9474(83)90127-6

    Article  ADS  Google Scholar 

  25. S. Hirenzaki et al., Chiral unitary model for the kaonic atom. Phys. Rev. C 61, 055205 (2000). https://doi.org/10.1103/PhysRevC.61.055205

    Article  ADS  Google Scholar 

  26. M. Bazzi et al., Measurements of the strong-interaction widths of the kaonic 3He and 4He 2p levels. Phys. Lett. B 714, 40–43 (2012). https://doi.org/10.1016/j.physletb.2012.06.071

    Article  ADS  Google Scholar 

  27. D. Sirghi et al., A new kaonic helium measurement in gas by SIDDHARTINO at the DA\(\Phi \)NE collider. J. Phys. G: Nucl. Part. Phys. 49, 055106 (2022). https://doi.org/10.1088/1361-6471/ac5dac

    Article  ADS  Google Scholar 

  28. C. Milardi, et al., Preparation Activity for the Siddharta-2 Run at DA\(\Phi \)NE, in: 9th International Particle Accelerator Conference, IPAC2018, Vancouver BC Canada, 2018. https://doi.org/10.18429/JACoW-IPAC2018-MOPMF088

  29. M. Skurzok et al., Characterization of the SIDDHARTA-2 luminosity monitor. JINST 15(10), P10010 (2020). https://doi.org/10.1088/1748-0221/15/10/P10010

    Article  Google Scholar 

  30. P. Moskal et al., Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys. Med. Biol. 66, 175015 (2021). https://doi.org/10.1088/1361-6560/ac16bd

    Article  Google Scholar 

  31. P. Moskal, A. Gajos, M. Mohammed, and others, Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun. 12, 5658 (2021). https://doi.org/10.1038/s41467-021-25905-9

    Article  ADS  Google Scholar 

  32. P. Moskal et al., Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 7, eabh4394 (2021). https://doi.org/10.1126/sciadv.abh4394

    Article  ADS  Google Scholar 

  33. S. Niedźwiecki et al., J-PET: a new technology for the whole-body PET imaging. Acta Phys. Pol. B 48, 1567 (2017). https://doi.org/10.1126/sciadv.abh4394

    Article  ADS  Google Scholar 

  34. L. Bombelli, C. Fiorini, T. Frizzi, R. Nava, A. Greppi, A. Longoni, Low-noise cmos charge preamplifier for x-ray spectroscopy detectors, in: IEEE Nuclear Science Symposium Medical Imaging Conference, 2010, pp. 135–138. https://doi.org/10.1109/NSSMIC.2010.5873732

  35. R. Quaglia, F. Schembari, G. Bellotti, A.D. Butt, C. Fiorini, L. Bombelli, G. Giacomini, F. Ficorella, C. Piemonte, N. Zorzi, Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment. Nucl. Instrum. Meth. A 824, 449–451 (2016). https://doi.org/10.1016/j.nima.2015.08.079

    Article  ADS  Google Scholar 

  36. F. Schembari et al., SFERA: an integrated circuit for the readout of X and \(\gamma \)-Ray detectors. IEEE Trans. Nucl. Sci. 63, 1797 (2016). https://doi.org/10.1109/TNS.2016.2565200

    Article  ADS  Google Scholar 

  37. F. Sgaramella et al., The SIDDHARTA-2 calibration method for high precision kaonic atoms x-ray spectroscopy measurements. Phys. Scripta 97(11), 114002 (2022). https://doi.org/10.1088/1402-4896/ac95da

    Article  ADS  Google Scholar 

  38. M. Miliucci et al., Silicon drift detectors system for high-precision light kaonic atoms spectroscopy. Meas. Sci. Tech. 32(9), 095501 (2021). https://doi.org/10.1088/1361-6501/abeea9

    Article  ADS  Google Scholar 

  39. C. Curceanu, C. Guaraldo, M. Iliescu, M. Cargnelli, R. Hayano, J. Marton, J. Zmeskal, T. Ishiwatari, M. Iwasaki, S. Okada, D.L. Sirghi, H. Tatsuno, The modern era of light kaonic atom experiments. Rev. Mod. Phys. 91, 025006 (2019). https://doi.org/10.1103/RevModPhys.91.025006

    Article  ADS  Google Scholar 

  40. M. Bazzi, and others (SIDDHARTA collaboration), Kaonic helium-4 X-ray measurement in SIDDHARTA. Phys. Lett. B 681, 310–314 (2009). https://doi.org/10.1016/j.physletb.2009.10.052

    Article  ADS  Google Scholar 

  41. M. Miliucci et al., Large area silicon drift detectors system for high precision timed X-ray spectroscopy. Meas. Sci. Tech. 33(9), 095502 (2022). https://doi.org/10.1088/1361-6501/ac777a

    Article  ADS  Google Scholar 

  42. S. Wycech, B. Loiseau, An Advantage of “Upper Levels.” Acta Phys. Polon. B 51, 109 (2020). https://doi.org/10.5506/APhysPolB.51.109

  43. M. Merafina, F.G. Saturni, C. Curceanu, R. Del Grande, K. Piscicchia, Self-gravitating strange dark matter halos around galaxies. Phys. Rev. D 102(8), 083015 (2020). https://doi.org/10.1103/PhysRevD.102.083015. arXiv:2007.03024

    Article  ADS  Google Scholar 

  44. C. Curceanu et al., Kaonic atoms to investigate global symmetry breaking. Symmetry 12(4), 547 (2020). https://doi.org/10.3390/sym12040547

    Article  ADS  Google Scholar 

  45. A. Drago, M. Moretti, G. Pagliara, The equation of state of dense matter: stiff, soft, or both? Astron. Nachr. 340(1–3), 189–193 (2019). https://doi.org/10.1002/asna.201913586

    Article  ADS  Google Scholar 

  46. C. Curceanu et al., Kaonic atoms measurements at DA\(\Phi \)NE: SIDDHARTA-2 and future perspectives. Few Body Syst. 62(4), 83 (2021). https://doi.org/10.1007/s00601-021-01666-5

  47. C. Curceanu, et al., Fundamental physics at the strangeness frontier at DA\(\Phi \)NE. Outline of a proposal for future measurements 4 (2021). arXiv:2104.06076

Download references

Acknowledgements

We thank C. Capoccia from LNF-INFN and H. Schneider, L. Stohwasser, and D. Pristauz-Telsnigg from Stefan Meyer-Institut for their fundamental contribution in designing and building the SIDDHARTA-2 setup. We thank as well the DA\(\mathrm {\Phi }\)NE staff for the excellent working conditions and permanent support. We acknowledge support from the SciMat and qLife Priority Research Areas budget under the program Excellence Initiative-Research University at the Jagiellonian University. Part of this work was supported by the Austrian Science Fund (FWF): [P24756-N20 and P33037-N]; the EXOTICA project of the Minstero degli Affari Esteri e della Cooperazione Internazionale, PO21MO03; the Croatian Science Foundation under the project IP-2018-01-8570; the EU STRONG-2020 project (Grant Agreement No. 824093; the EU Horizon 2020 project under the MSCA (Grant Agreement 754496); the Japan Society for the Promotion of Science JSPS KAKENHI Grant No. JP18H05402; the Polish Ministry of Science and Higher Education grant No. 7150/E-338/M/2018 and the Polish National Agency for Academic Exchange (grant no PPN/BIT/2021/1/00037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sgaramella.

Additional information

Communicated by Klaus Peters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sgaramella, F., Tüchler, M., Amsler, C. et al. Measurements of high-n transitions in intermediate mass kaonic atoms by SIDDHARTA-2 at DA\(\mathrm {\Phi }\)NE. Eur. Phys. J. A 59, 56 (2023). https://doi.org/10.1140/epja/s10050-023-00976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00976-y

Navigation