Skip to main content
Log in

Composite pulses for population transfer in the interaction of two-level nuclear systems with X-ray laser pulses

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Population transfer of two-state nuclei interacting with a train of composite X-ray free electron laser (XFEL) pulses has been investigated theoretically. In this study, we calculate the effective intensity of the XFEL pulse for each nucleus so that the time temporal pulse area of Rabi frequency is equal to \(\pi \). We show that with increasing the number of composite pulses, even with a significant deviation of the effective intensity of the laser beam from the calculated value, the population is completely transferred from the ground state to the excited state. For numerical study, nuclei with a high lifetime in the excited state, compared to the XFEL laser pulse duration, have been selected so that the effect of spontaneus emission can be neglected. Finally, it has been shown that despite the detuning effects, by increasing the number of XFEL composite pulses as well as the effective intensity of the laser pulse, the population is completely transferred to the excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This research is a theoretical study that the information about the nuclear states are extracted from https://www.nndc.bnl.gov/ensdf/.]

References

  1. L. Allen, J.H. Eberly, Optical resonance and two-level atoms (Wiley, New York, 1975)

    Google Scholar 

  2. B.W. Shore, The theory of coherent atomic excitation (Wiley, New York, 1990)

    Google Scholar 

  3. P. Lambropoulos, D. Petrosyan, Fundamentals of quantum optics and quantum information, Springer, Vol. 23 (2007)

  4. N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001). https://doi.org/10.1016/S1049-250X(01)80063-X

    Article  ADS  Google Scholar 

  5. K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015). https://doi.org/10.1063/1.4916903

    Article  ADS  Google Scholar 

  6. N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017). https://doi.org/10.1103/RevModPhys.89.015006

    Article  ADS  Google Scholar 

  7. B.W. Shore, Adv. Opt. Photon. 9, 563 (2017). https://doi.org/10.1364/AOP.9.000563

    Article  Google Scholar 

  8. U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, J. Chem. Phys. 92, 5363 (1990). https://doi.org/10.1063/1.458514

  9. K. Bergmann, H.C. Nägerl, C. Panda et al., J. Phys. B: At. Mol. Opt. Phys. 52, 20 (2019). https://doi.org/10.1088/1361-6455

    Article  Google Scholar 

  10. E.A. Shapiro, V. Milner, C. Menzel-Jones, M. Shapiro, Phys. Rev. Lett. 99, 033002 (2007). https://doi.org/10.1103/PhysRevLett.99.033002

    Article  ADS  Google Scholar 

  11. S. Zhdanovich, E.A. Shapiro, M. Shapiro, J.W. Hepburn, V. Milner, V. Phys, Rev. Lett. 100, 103004 (2008). https://doi.org/10.1103/PhysRevLett.100.103004

    Article  ADS  Google Scholar 

  12. E.A. Shapiro, A. Pe’er, J. Ye, M. Shapiro, Phys. Rev. Lett. 101, 023601 (2008). https://doi.org/10.1103/PhysRevLett.101.023601

    Article  ADS  Google Scholar 

  13. A.A. Rangelov, N.V. Vitanov, Phys. Rev. A 85, 043407 (2012). https://doi.org/10.1103/PhysRevA.85.043407

    Article  ADS  Google Scholar 

  14. T. J. Bürvenich, Jörg. Evers, Christoph H. Keitel, Phys. Rev. Lett , 142501 (2006). https://doi.org/10.1103/PhysRevLett.96.142501

  15. B. Seiferle et al., Nature 573, 243–246 (2019). https://doi.org/10.1038/s41586-019-1533-4

    Article  ADS  Google Scholar 

  16. E. Peik, T. Schumm, M.S. Safronova et al., Quant. Sci. Technol. 6, 034002 (2021). https://doi.org/10.1088/2058-9565/abe9c2

    Article  ADS  Google Scholar 

  17. A. Pálffy, J. Mod. Opt. 55, 2603–2615 (2008). https://doi.org/10.1080/09500340802213666

    Article  ADS  Google Scholar 

  18. A. Pálffy, C.H. Keitel, J. Evers, Phys. Rev. B 83, 155103 (2011). https://doi.org/10.1103/PhysRevB.83.155103

    Article  ADS  Google Scholar 

  19. A. Junker, A. Pálffy, C.H. Keitel, New J. Phys. 14, 085025 (2012). https://doi.org/10.1088/1367-2630/14/8/085025

    Article  ADS  Google Scholar 

  20. W.-T. Liao, A. Pálffy, C.H. Keitel, Phys. Rev. C 87, 054609 (2013). https://doi.org/10.1103/PhysRevC.87.054609

    Article  ADS  Google Scholar 

  21. W.T. Liao, Nuclear coherent population transfer with X-ray laser pulses (Springer, In Coherent Control of Nuclei and X-Ray, 2014)

  22. W.-T. Liao, A. Pálffy, Phys. Rev. Lett. 112, 057401 (2014). https://doi.org/10.1103/PhysRevLett.112.057401

    Article  ADS  Google Scholar 

  23. A. Pálffy, O. Buss, A. Hoefer, H.A. Weidenmüller, Phys. Rev. C 92, 044619 (2015). https://doi.org/10.1103/PhysRevC.92.044619

    Article  ADS  Google Scholar 

  24. B. Nedaee-Shakarab, M. Saadati-Niari, F. Zolfagharpour, Phys. Rev. C 94, 054601 (2016). https://doi.org/10.1103/PhysRevC.94.054601

    Article  ADS  Google Scholar 

  25. B. Nedaee-Shakarab, M. Saadati-Niari, F. Zolfagharpour, Phys. Rev. C 96, 044619 (2017). https://doi.org/10.1103/PhysRevC.96.044619

    Article  ADS  Google Scholar 

  26. J. Haber, X. Kong, C. Strohm et al., Nat. Photon. 11, 720–725 (2017). https://doi.org/10.1038/s41566-017-0013-3

    Article  ADS  Google Scholar 

  27. L. von der Wense, P.V. Bilous, B. Seiferle et al., Eur. Phys. J. A 56, 1–22 (2020). https://doi.org/10.1140/epja/s10050-020-00177-x

    Article  Google Scholar 

  28. N. Mansourzadeh-Ashkani, M. Saadati-Niari, F. Zolfagharpour et al., Nucl. Phys. A 1007, 122119 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122119

    Article  Google Scholar 

  29. N. Mansourzadeh-Ashkani, M. Saadati-Niari, F. Zolfagharpour et al., J. Phys. G: Nucl. Part. Phys. 499, 015103 (2021). https://doi.org/10.1088/1361-6471/ac3630

    Article  Google Scholar 

  30. T. Kirschbaum, N. Minkov, A. Pálffy, Phys. Rev. C 105, 064313 (2022). https://doi.org/10.1103/PhysRevC.105.064313

    Article  ADS  Google Scholar 

  31. M.H. Levitt, R. Freeman, J. Magn. Reson. 33, 473–476 (1979). https://doi.org/10.1016/0022-2364(79)90265-8

    Article  ADS  Google Scholar 

  32. R. Freeman, S.P. Kempsell, M.H. Levitt, J. Magn. Reson. 38, 473–476 (1980). https://doi.org/10.1016/0022-2364(80)90327-3

    Article  ADS  Google Scholar 

  33. M.H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). https://doi.org/10.1016/0079-6565(86)80005-X

    Article  ADS  Google Scholar 

  34. R. Freeman, Spin Choreography (Basic Steps in High Resolution NMR Spektrum Academic, Oxford, 1997)

  35. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155–203 (2008). https://doi.org/10.1016/j.physrep.2008.09.003

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Timoney, V. Elman, S. Glaser et al., Phys. Rev. A 77, 052334 (2008). https://doi.org/10.1103/PhysRevA.77.052334

    Article  ADS  Google Scholar 

  37. S.S. Ivanov, N.V. Vitanov, Opt. Lett. 36, 1275–1277 (2011). https://doi.org/10.1364/OL.36.001275

    Article  ADS  Google Scholar 

  38. G.T. Genov, B.T. Torosov, N.V. Vitanov, Phys. Rev. A 84, 063413 (2011). https://doi.org/10.1103/PhysRevA.84.063413

    Article  ADS  Google Scholar 

  39. B.T. Torosov, N.V. Vitanov, Phys. Rev. A 90, 012341 (2014). https://doi.org/10.1103/PhysRevA.90.012341

    Article  ADS  Google Scholar 

  40. B.T. Torosov, E.S. Kyoseva, N.V. Vitanov, Phys. Rev. A 92, 033406 (2015). https://doi.org/10.1103/PhysRevA.92.033406

    Article  ADS  Google Scholar 

  41. B.T. Torosov, N.V. Vitanov, Phys. Rev. A 100, 023410 (2019). https://doi.org/10.1103/PhysRevA.100.023410

    Article  ADS  Google Scholar 

  42. B.T. Torosov, N.V. Vitanov, Phys. Rev. A 83, 053420 (2011). https://doi.org/10.1103/PhysRevA.83.053420

    Article  ADS  Google Scholar 

  43. G.T. Genov, D. Schraft, T. Halfmann, N.V. Vitanov, Phys. Rev. Lett. 113, 043001 (2014). https://doi.org/10.1103/PhysRevLett.113.043001

    Article  ADS  Google Scholar 

  44. A. Bruns, Genko T. Genov, Marcel Hain et al., Phys. Rev. A 98, 053413 (2018). https://doi.org/10.1103/PhysRevA.98.053413

    Article  ADS  Google Scholar 

  45. C. Zhang, Y. Liu, Z.-C. Shi, J. Song et al., Phys. Rev. A 105, 042414 (2022). https://doi.org/10.1103/PhysRevA.105.042414

    Article  ADS  Google Scholar 

  46. B.T. Torosov, N.V. Vitanov, Phys. Rev. A 87, 043418 (2013). https://doi.org/10.1103/PhysRevA.87.043418

    Article  ADS  Google Scholar 

  47. B.T. Torosov, S. Guérin, N.V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011). https://doi.org/10.1103/PhysRevLett.106.233001

    Article  ADS  Google Scholar 

  48. K.P. Heeg, A. Kaldun, C. Strohm et al., Nature 590, 401–404 (2021). https://doi.org/10.1038/s41586-021-03276-x

    Article  ADS  Google Scholar 

  49. Y.-H. Chen, P.-H. Lin, G.-Y. Wang, A. Pálffy, W.-T. Liao, Phys. Rev. Res. 4, L032007 (2022). https://doi.org/10.1103/PhysRevResearch.4.L032007

    Article  Google Scholar 

  50. S. Nandi, E. Olofsson, M. Bertolino et al., Nature 608, 488–493 (2022). https://doi.org/10.1038/s41586-022-04948-y

    Article  ADS  Google Scholar 

  51. M. Wollenhaupt, V. Engel, T. Baumert, Annu. Rev. Phys. Chem. 56, 25–56 (2005). https://doi.org/10.1146/annurev.physchem.56.092503.141315

    Article  ADS  Google Scholar 

  52. M. Wollenhaupt, A. ,Assion, T. Baumert, Femtosecond laser pulses: linear properties, manipulation, generation and measurement, Springer Handbook of Lasers and Optics, New York (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maghsoud Saadati -Niari.

Additional information

Communicated by Arnau Rios Huguet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., -Niari, M.S. Composite pulses for population transfer in the interaction of two-level nuclear systems with X-ray laser pulses. Eur. Phys. J. A 59, 32 (2023). https://doi.org/10.1140/epja/s10050-023-00954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00954-4

Navigation