Skip to main content
Log in

Estimation of coupling constants for D-meson, charmed, and light baryons in effective Lagrangian approach and quark model

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We estimate coupling constants for effective Lagrangians of D-meson, charmed, and light baryons from charmed baryon decay processes. First, we calculate decay widths for the processes \(\varLambda _{c} \rightarrow D^{*}N\), \(\varLambda _{c} \rightarrow DN\), \(\varSigma _{c} \rightarrow D N\) , \(\varSigma _{c} \rightarrow D \varDelta \), and \(\varSigma _{c} \rightarrow D^{*} \varDelta \) in effective Lagrangian method and quark model picture with \(^{3}P_{0}\) model. By employing the coupling constants for \(D^{*} \varLambda _{c} N\) interaction from several literatures, the strength parameter \(\lambda \) for \(^{3}P_{0}\) quark model is fixed in the decay process \(\varLambda _{c} \rightarrow D^{*}N\). Then, the coupling constants for the effective Lagrangians of \(D\varLambda _{c}N\), \(D\varSigma _{c}N\), \(D\varSigma _{c}\varDelta \), and \(D^{*}\varSigma _{c}\varDelta \) interactions are estimated in the decay channels \(\varLambda _{c} \rightarrow DN\), \(\varSigma _{c} \rightarrow D N\), \(\varSigma _{c} \rightarrow D \varDelta \), and \(\varSigma _{c} \rightarrow D^{*} \varDelta \), respectively. Then, the coupling constants for \(D\varSigma _{c}N\), \(D^{*}\varSigma _{c}N\), and \(D^{*}\varSigma _{c}^{*}\varDelta \) interactions are calculated from heavy-quark and large-\(N_c\) sum rules. The coupling constants from this study will be useful for further studies of charm hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no experimental data available because the masses of the initial particles are below the threshold. In this work, the results are obtained by extrapolating the decay widths to those below the threshold.]

References

  1. J.E. Augustin et al., [SLAC-SP-017], Phys. Rev. Lett. 33, 1406–1408 (1974)

  2. J.J. Aubert et al., [E598], Phys. Rev. Lett. 33, 1404–1406 (1974)

  3. E.G. Cazzoli, A.M. Cnops, P.L. Connolly, R.I. Louttit, M.J. Murtagh, R.B. Palmer, N.P. Samios, T.T. Tso, H.H. Williams, Phys. Rev. Lett. 34, 1125–1128 (1975)

    Article  ADS  Google Scholar 

  4. S.K. Choi et al., [Belle], Phys. Rev. Lett. 91, 262001 (2003)

  5. B. Aubert et al., [BaBar], Phys. Rev. D 71, 071103 (2005)

  6. B. Aubert et al., [BaBar], Phys. Rev. Lett. 95, 142001 (2005)

  7. K. Abe et al., [Belle], Phys. Rev. Lett. 98, 082001 (2007)

  8. S.K. Choi et al., [Belle], Phys. Rev. Lett. 100, 142001 (2008)

  9. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, PTEP 2016(6), 062C01 (2016)

    Google Scholar 

  10. M. Ablikim et al., [BESIII], Phys. Rev. Lett. 110, 252001 (2013)

  11. Z.Q. Liu et al., [Belle], Phys. Rev. Lett. 110, 252002 (2013)

  12. M. Ablikim et al., [BESIII], Phys. Rev. Lett. 111(24), 242001 (2013)

  13. R. Aaij et al., [LHCb], Phys. Rev. Lett. 110, 222001 (2013)

  14. R. Aaij et al., [LHCb], Phys. Rev. Lett. 112(22), 222002 (2014)

  15. L. Micu, Nucl. Phys. B 10, 521–526 (1969)

    Article  ADS  Google Scholar 

  16. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189–231 (1985)

    Article  ADS  Google Scholar 

  17. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005)

    Article  ADS  Google Scholar 

  18. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 634, 214–219 (2006)

    Article  ADS  Google Scholar 

  19. A. Limphirat, C. Kobdaj, P. Suebka, Y. Yan, Phys. Rev. C 82, 055201 (2010)

    Article  ADS  Google Scholar 

  20. K. Xu, A. Kaewsnod, Z. Zhao, X.Y. Liu, S. Srisuphaphon, A. Limphirat, Y. Yan, Phys. Rev. D 101(7), 076025 (2020)

    Article  ADS  Google Scholar 

  21. S.N. Gupta, J.M. Johnson, Phys. Rev. D 51, 168–175 (1995)

    Article  ADS  Google Scholar 

  22. D. Ebert, V.O. Galkin, R.N. Faustov, Phys. Rev. D 57, 5663–5669 (1998)

    Article  ADS  Google Scholar 

  23. L.Y. Glozman, Phys. Lett. B 587, 69–77 (2004)

    Article  ADS  Google Scholar 

  24. M.A. Nowak, M. Rho, I. Zahed, Acta Phys. Polon. B 35, 2377–2392 (2004)

    ADS  Google Scholar 

  25. M.T. AlFiky, F. Gabbiani, A.A. Petrov, Phys. Lett. B 640, 238–245 (2006)

    Article  ADS  Google Scholar 

  26. X. Liu, Y.M. Yu, S.M. Zhao, X.Q. Li, Eur. Phys. J. C 47, 445–452 (2006)

    Article  ADS  Google Scholar 

  27. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nucl. Phys. B 566, 275 (2000)

    Article  ADS  Google Scholar 

  28. V.V. Braguta, A.K. Likhoded, A.V. Luchinsky, Phys. Rev. D 72, 074019 (2005)

    Article  ADS  Google Scholar 

  29. N. Isgur, J.E. Paton, Phys. Rev. D 31, 2910 (1985)

    Article  ADS  Google Scholar 

  30. P. Chen, Phys. Rev. D 64, 034509 (2001)

    Article  ADS  Google Scholar 

  31. M. Okamoto, S. Aoki, R. Burkhalter, S. Ejiri, M. Fukugita, S. Hashimoto et al., [CP-PACS], Phys. Rev. D 65, 094508 (2002)

  32. X. Liao, T. Manke, arXiv:hep-lat/0210030 [hep-lat]

  33. C. McNeile, C. Michael, P. Pennanen, Phys. Rev. D 65, 094505 (2002)

    Article  ADS  Google Scholar 

  34. T.W. Chiu, T.H. Hsieh et al., [TWQCD], Phys. Rev. D 73, 094510 (2006)

  35. T.W. Chiu et al., [TWQCD], Phys. Lett. B 646, 95–99 (2007)

  36. E.S. Swanson, Phys. Rept. 429, 243–305 (2006)

    Article  ADS  Google Scholar 

  37. N. Brambilla, S. Eidelman, B.K. Heltsley, R. Vogt, G.T. Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  38. U. Wiedner, Prog. Part. Nucl. Phys. 66, 477–518 (2011)

    Article  ADS  Google Scholar 

  39. Charmed Baryon Spectroscopy via the \((\pi ^-,D^{*-})\) reaction, http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301+

  40. S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, Phys. Rev. D 92(9), 094021 (2015)

    Article  ADS  Google Scholar 

  41. T. Sangkhakrit, S.I. Shim, Y. Yan, A. Hosaka, Eur. Phys. J. A 58(2), 32 (2022)

    Article  ADS  Google Scholar 

  42. A. Khodjamirian, C. Klein, T. Mannel, Y.M. Wang, Eur. Phys. J. A 48, 31 (2012)

    Article  ADS  Google Scholar 

  43. A.I. Titov, B. Kampfer, Phys. Rev. C 78, 025201 (2008)

    Article  ADS  Google Scholar 

  44. J. Haidenbauer, T. Hippchen, K. Holinde, B. Holzenkamp, V. Mull, J. Speth, Phys. Rev. C 45, 931–946 (1992)

    Article  ADS  Google Scholar 

  45. R. Shyam, H. Lenske, Phys. Rev. D 90(1), 014017 (2014)

    Article  ADS  Google Scholar 

  46. J. Haidenbauer, G. Krein, Phys. Rev. D 95(1), 014017 (2017)

    Article  ADS  Google Scholar 

  47. C.E. Fontoura, J. Haidenbauer, G. Krein, Eur. Phys. J. A 53(5), 92 (2017)

    Article  ADS  Google Scholar 

  48. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 90(11), 114011 (2014)

    Article  ADS  Google Scholar 

  49. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 92(1), 014022 (2015)

    Article  ADS  Google Scholar 

  50. K. Azizi, Y. Sarac, H. Sundu, Nucl. Phys. A 943, 159–167 (2015)

    Article  ADS  Google Scholar 

  51. G.L. Yu, R.H. Guan, Z.G. Wang, Int. J. Mod. Phys. A 33(36), 1850217 (2019)

  52. Y. Yan, C. Kobdaj, P. Suebka, Y.M. Zheng, A. Faessler, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. C 71, 025204 (2005)

  53. K. Kittimanapun, Y. Yan, K. Khosonthongkee, C. Kobdaj, P. Suebka, Phys. Rev. C 79, 025201 (2009)

    Article  ADS  Google Scholar 

  54. A. Faessler, K. Khosonthongkee, C. Kobdaj, A. Limphirat, P. Suebka, Y. Yan, J. Phys. G 37(11), 115002 (2010)

    Article  ADS  Google Scholar 

  55. N. Isgur, G. Karl, Phys. Rev. D 20, 1191–1194 (1979)

    Article  ADS  Google Scholar 

  56. W. Sreethawong, K. Xu, Y. Yan, J. Phys. G 42(2), 025001 (2015)

    Article  ADS  Google Scholar 

  57. C.B. Dover, T. Gutsche, M. Maruyama, A. Faessler, Prog. Part. Nucl. Phys. 29, 87–174 (1992)

    Article  ADS  Google Scholar 

  58. A. Muhm, T. Gutsche, R. Thierauf, Y. Yan, A. Faessler, Nucl. Phys. A 598, 285–317 (1996)

    Article  ADS  Google Scholar 

  59. A. Limphirat, W. Sreethawong, K. Khosonthongkee, Y. Yan, Phys. Rev. D 89(5), 054030 (2014)

    Article  ADS  Google Scholar 

  60. T. Sangkhakrit, \(\Lambda _{c}\) baryon productions in effective Lagrangian approach, Ph.D. Dissertation, Suranaree University of Technology (2020)

Download references

Acknowledgements

This work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science Research and Innovation Fund (NSRF), project no. 160355. This work is partially supported by Thailand NSRF via PMU-B [grant number B05F650021]. TS and YY acknowledge support from Thailand Science Research and Innovation and Suranaree University of Technology through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0041/2555). DS is supported by the Fundamental Fund 2565 of Khon Kaen University and DS has received funding support from the National Science, Research and Innovation Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thanat Sangkhakrit, Warintorn Sreethawong, Daris Samart or Yupeng Yan.

Additional information

Communicated by Che-Ming Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangkhakrit, T., Kaewsnod, A., Sreethawong, W. et al. Estimation of coupling constants for D-meson, charmed, and light baryons in effective Lagrangian approach and quark model. Eur. Phys. J. A 59, 24 (2023). https://doi.org/10.1140/epja/s10050-023-00940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00940-w

Navigation