Skip to main content
Log in

Neutron density fluctuation and neutron–proton correlation from AMPT model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using the multiphase transport (AMPT) model, we study the relative neutron density fluctuation and neutron–proton correlation in matter produced by Au + Au collisions at \(\sqrt{s_\text {NN}}= \)7.7–200 GeV. The rapidity, centrality, and energy dependence of these two observations are also discussed. The light nuclei yield ratio of proton, deuteron, and triton \(N_tN_p/N_d^2\) calculated directly from the relative neutron density fluctuation and neutron–proton correlation, decreases with rapidity coverage and increases with collision centrality. Our study also found that the ratio does not exhibit any non-monotonic behavior in collision energy dependence. Since there is no first-order phase transition or critical physics in the AMPT model, our work provides a reference for extracting the relative neutron density fluctuation from light nuclei production in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The manuscript has associated data in a data repository [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009). https://doi.org/10.1103/RevModPhys.81.1031

    Article  ADS  Google Scholar 

  2. Y. Aoki, G. Endrodi, Z. Fodor, S.. D. Katz, K..K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  3. P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002). https://doi.org/10.1016/s0550-3213(02)00626-0

    Article  ADS  Google Scholar 

  4. Z. Fodor, S..D. Katz, K..K. Szabó, Phys. Lett. B 568, 73 (2003). https://doi.org/10.1016/j.physletb.2003.06.011

    Article  ADS  Google Scholar 

  5. Z. Fodor, S..D. Katz, J. High Energy Phys. 2004, 050 (2004). https://doi.org/10.1088/1126-6708/2004/04/050

    Article  ADS  Google Scholar 

  6. R.V. Gavai, S. Gupta, Phys. Rev. D 71(2005). https://doi.org/10.1103/PhysRevD.71.114014

  7. F. Karsch et al., Nucl. Phys. A 956, 352 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.008

  8. S. Gupta, X. Luo, B. Mohanty, H..G. Ritter, N. Xu, Science 332, 1525 (2011). https://doi.org/10.1126/science.1204621

  9. M. Stephanov, PoS LAT2006, 024 (2006). https://doi.org/10.22323/1.032.0024

    Article  Google Scholar 

  10. M..M. Aggarwal et al., Phys. Rev. Lett. 105, 022302 (2010). https://doi.org/10.1103/PhysRevLett.105.022302

    Article  ADS  Google Scholar 

  11. L. Adamczyk et al., Phys. Rev. Lett. 112, 032302 (2014). https://doi.org/10.1103/PhysRevLett.112.032302

    Article  ADS  Google Scholar 

  12. L. Adamczyk et al., Phys. Rev. Lett. 113, 092301 (2014b). https://doi.org/10.1103/PhysRevLett.113.092301

    Article  ADS  Google Scholar 

  13. L. Adamczyk et al., Phys. Lett. B 785, 551 (2018). https://doi.org/10.1016/j.physletb.2018.07.066

    Article  ADS  Google Scholar 

  14. J. Adam et al., Phys. Rev. C 100 (2019). https://doi.org/10.1103/PhysRevC.100.014902

  15. J. Adam et al., Phys. Rev. Lett. 126, 092301 (2021). https://doi.org/10.1103/PhysRevLett.126.092301

    Article  ADS  Google Scholar 

  16. K..-J. Sun, L..-W. Chen, C..M. Ko, Z. Xu, Phys. Lett. B 774, 103 (2017). https://doi.org/10.1016/j.physletb.2017.09.056

    Article  ADS  Google Scholar 

  17. K..-J. Sun, L..-W. Chen, C..M. Ko, J. Pu, Z. Xu, Phys. Lett. B 781, 499 (2018). https://doi.org/10.1016/j.physletb.2018.04.035

    Article  ADS  Google Scholar 

  18. N. Yu, D. Zhang, X. Luo, Chin. Phys. C 44 (2020). https://doi.org/10.1088/1674-1137/44/1/014002

  19. W. Zhao, K.-j Sun, C.M. Ko, X. Luo, Phys. Lett. B 820 (2021). https://doi.org/10.1016/j.physletb.2021.136571

  20. H. Liu, D. Zhang, S. He, K.-J. Sun, N. Yu, X. Luo, Phys. Lett. B 805(2020). https://doi.org/10.1016/j.physletb.2020.135452

  21. D. Zhang, Nucl. Phys. A 1005 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121825

  22. T. S. Collaboration, href@noop (2022). arXiv:2209.08058

  23. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72 (2005). https://doi.org/10.1103/PhysRevC.72.064901

  24. Z..-W. Lin, Phys. Rev. C 90 (2014). https://doi.org/10.1103/PhysRevC.90.014904

  25. Z.-W. Lin, Phys. Rev. C 90 (2014). https://doi.org/10.1103/PhysRevC.90.014904

  26. K.-J. Sun, C.M. Ko, Z.-W. Lin, Phys. Rev. C 103 (2021). https://doi.org/10.1103/PhysRevC.103.064909

  27. T. Anticic et al., Phys. Rev. C 94 (2016). https://doi.org/10.1103/PhysRevC.94.044906 (NA49 Collaboration)

Download references

Acknowledgements

The authors appreciate the referee for his/her careful reading of the paper and valuable comments. This work is supported in part by the Science and technology research project of Hubei Provincial Department of Education (No. B2021256), Natural Science Foundation of Henan Province (No. 212300410386), Key Research Projects of Henan Higher Education Institutions (No. 20A140024), and NSFC Key Grant 12061141008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yu.

Additional information

Communicated by Che-Ming Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, N. & Xu, H. Neutron density fluctuation and neutron–proton correlation from AMPT model. Eur. Phys. J. A 58, 240 (2022). https://doi.org/10.1140/epja/s10050-022-00897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00897-2

Navigation