Skip to main content
Log in

Impact of Baryon anti-Baryon annihilation on hyperon (\(\Lambda \), \(\bar{\Lambda }\)) production and apparent strangeness enhancement in \(\bar{\Lambda }/\bar{p}\) in heavy ion collisions at SPS energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A deconfined medium of quarks and gluon, called the Quark–Gluon Plasma (QGP) is produced when heavy-nuclei are collided at relativistic energies. The QGP formation is often characterized by a phenomenon called strangeness enhancement where, the relative production of strange-to-non-strange particles are enhanced in central collisions compared to peripheral or proton-proton interactions. Besides the enhancement in K/\(\pi \) ratios, a non-monotonic energy dependence was also reported for \(\bar{\Lambda }\) to \(\bar{p}\) ratios at CERN SPS, attributed to a signature for the strangeness enhancement as well. As anti-particles are produced directly from the reaction, the \(\bar{\Lambda }\)/\(\bar{p}\) ratios are considered as a cleaner probe for the strangeness enhancement. However, at this energy range hadronic interactions have a dominant role to play and, importantly for \({\bar{\Lambda }}\) and \({\bar{p}}\), processes like baryon-anti-baryon (\(\textrm{B}{\bar{\textrm{B}}}\)) annihilation can have a significant impact. In this work, we use a hadronic transport model UrQMD, to investigate the role of baryon-anti-baryon (\(\textrm{B}{\bar{\textrm{B}}}\)) annihilation on \(\Lambda \), \(\bar{\Lambda }\) hyperon production and its effect on \(\bar{\Lambda }\)/\(\bar{p}\) ratios. The UrQMD calculations that include \(\textrm{B}{\bar{\textrm{B}}}\) annihilation can produce the trend of average transverse mass spectra for \(\Lambda \) and \(\bar{\Lambda }\), as well as, the characteristic enhancement in \(\bar{\Lambda }\)/\(\bar{p}\) ratios in data as a function of centrality and collision energy. Furthermore, \(\bar{\Lambda }\)/\(\bar{p}\) ratios extracted from the feed-down corrected SPS data are seen to be in good agreement with UrQMD model calculations with \(\textrm{B}{\bar{\textrm{B}}}\) annihilation. This suggests that \(\bar{\Lambda }\)/\(\bar{p}\) enhancement is not necessarily because of strangeness enhancement and \(\textrm{B}{\bar{\textrm{B}}}\) annihilation has a significant role to play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper uses UrQMD event generator with specific settings and experimental data points that are publicly available. In case the data are required, we can provide the same upon request to the corresponding author.]

References

  1. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, 2001 Proccedings of NIC Symposium (Ed. H. Rollnik and D. Wolf, John von Neumann Institute for Computing, J ulich, NIC Series, vol.9, ISBN 3-00-009055- X, pp.173-82,2002)

  2. M. Cheng et al., Phys. Rev. D 77, 014511 (2008)

    Article  ADS  Google Scholar 

  3. I. Arsene et al., BRAHMS Collaboration. Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  4. B.B. Back et al., PHOBOS Collaboration. Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  5. K. Adcox et al., PHENIX Collaboration. Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  6. J. Adam et al., STAR Collaboration. Nucl. Phys. A 757, 102 (2005)

    ADS  Google Scholar 

  7. Berndt Müller, Jürgen. Schukraft, Bolesław Wysłouch, Ann. Rev. Nucl. Particle Sci. 62, 361–386 (2012)

    Article  Google Scholar 

  8. J. Rafelski, B. Muller, Phys. Rev. Lett. 48, 1066 (1982)

    Article  ADS  Google Scholar 

  9. Z.W. Lin, C.M. Ko, Phys. Rev. Lett. 89, 202302 (2002)

    Article  ADS  Google Scholar 

  10. D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)

    Article  ADS  Google Scholar 

  11. R.C. Hwa, C.B. Yang, Phys. Rev. C 67, 064902 (2003)

    Article  ADS  Google Scholar 

  12. R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003)

    Article  ADS  Google Scholar 

  13. V. Greco, C.M. Ko, P. Levai, Phys. Rev. Lett. 90, 202302 (2003)

  14. Jun Song, Xiao-feng Wang, Hai-hong Li, Rui-qin Wang, Feng-lan Shao, Phys. Rev. C 103, 034907 (2021)

  15. M. Mitrovski et al., NA49 Collaboration. J. Phys. G: Nucl. Part. Phys. 32, S43 (2006)

    Article  Google Scholar 

  16. S. Hamieh, K. Redlich, A. Tounsi, Phys. Lett. B 486, 61 (2000)

    Article  ADS  Google Scholar 

  17. A. Tounsi, K. Redlich, J. Phys. G: Nucl. Part. Phys. 28, 2095 (2002)

    Article  Google Scholar 

  18. B.I. Abelev et al., STAR Collaboration. Phys. Rev. C 81, 024911 (2010)

    Article  ADS  Google Scholar 

  19. M.M. Aggarwal et al., STAR Collaboration. Phys. Rev. C 83, 024901 (2011)

    Article  ADS  Google Scholar 

  20. J.L. Klay et al., E895 Collaboration. Phys. Rev. C 68, 054905 (2003)

    Article  ADS  Google Scholar 

  21. L. Adamczyk et al., STAR Collaboration. Phys. Rev. C 96, 044904 (2017)

    Article  ADS  Google Scholar 

  22. W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, Phys. Rev C. 93, 014902 (2016)

    Article  ADS  Google Scholar 

  23. F. Antinori et al., WA97 Collaboration. Eur. Phys. J. C 11, 79 (1999)

    ADS  Google Scholar 

  24. F. Antinori et al., NA57 Collaboration. J. Phys. G 32, 427 (2006)

    ADS  Google Scholar 

  25. C. Alt et al., (NA49 Collaboration) Phys. Rev. Lett. 94, 192301 (2005)

    Article  Google Scholar 

  26. Huan Z. Huang, J Phys. G: Nucl. Part. Phys. 30, S401 (2004)

    Article  Google Scholar 

  27. C. Alt et al., (NA49 Collaboration) Phys. Rev. C 78, 034918 (2008)

    Google Scholar 

  28. B.B. Back et al., (E917 Collaboration) Phys. Rev. Lett. 87, 242301 (2001)

    Article  Google Scholar 

  29. G.S.F. Stephans et al.,(E859 Collaboration), J. Phys. G, Nucl. Part. Phys. 23, 1895 (1997)

  30. T.A. Armstrong et al., E864 Collaboration. Phys. Rev. C 59, 2699 (1999)

    Article  ADS  Google Scholar 

  31. J. Gunther (for the NA35 Coll.), Nucl. Phys. A 590:487c (1995)

  32. C. Alt et al. (NA49 Collaboration), arXiv:nucl-ex/0512033v2 (2006)

  33. P. Koch, B. Muller, J. Rafelski, Phys. Rept. 142, 167 (1986)

    Article  Google Scholar 

  34. E. Seifert, W. Cassing, Phys. Rev. C 97, 044907 (2018)

    Article  ADS  Google Scholar 

  35. Fuqiang Wang, Marlene Nahrgang, Marcus Bleicher, Phys. Rev. C 85, 031902(R) (2012)

    Article  ADS  Google Scholar 

  36. M. Bleicher et al., J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999)

    Article  Google Scholar 

  37. J. Steinheimer, J. Aichelin, M. Bleicher, and H. St\(\ddot{\rm o\it }\)cker, Phys. Rev. C 95, 064902 (2017)

  38. Yinghua Pan, Scott Pratt, Phys. Rev. C 89, 044911 (2014)

    Article  ADS  Google Scholar 

  39. Oscar Garcia-Montero et al., Phys. Rev. C 105, 064906 (2022)

    Article  ADS  Google Scholar 

  40. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255–369 (1998)

    Article  ADS  Google Scholar 

  41. F.E. Close, Introduction to Quarks and Partons (Academic Press, London, 1979)

    Google Scholar 

  42. D.H. Perkins, Introduction to High Energy Physics, (Addison-Wesley, 1987), 3rd edition

  43. J. Adam et al., STAR Collaboration. Phys. Rev. C 102, 034909 (2020)

    Article  ADS  Google Scholar 

  44. https://edms.cern.ch/document/1075059/4

  45. T. Anticic et al., NA49 Collaboration. Phys. Rev. Lett. 93, 022302 (2004)

    Article  ADS  Google Scholar 

  46. E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has used resources of grid computing facility at Variable Energy Cyclotron Centre (VECC), Kolkata. Authors would like to acknowledge discussions with Prof. Steffen A. Bass on baryon-anti-baryon annihilation in UrQMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekata Nandy.

Additional information

Communicated by Che-Ming Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, E., Chattopadhyay, S. Impact of Baryon anti-Baryon annihilation on hyperon (\(\Lambda \), \(\bar{\Lambda }\)) production and apparent strangeness enhancement in \(\bar{\Lambda }/\bar{p}\) in heavy ion collisions at SPS energy. Eur. Phys. J. A 58, 199 (2022). https://doi.org/10.1140/epja/s10050-022-00856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00856-x

Navigation