Skip to main content

Advertisement

Log in

Isoscaling in central Sn+Sn collisions at 270 MeV/u

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Experimental information on fragment emissions is important in understanding the dynamics of nuclear collisions and in the development of transport model simulating heavy-ion collisions. The composition of complex fragments emitted in the heavy-ion collisions can be explained by statistical models, which assume that thermal equilibrium is achieved at collision energies below 100 MeV/u. Our new experimental data together with theoretical analyses for light particles from Sn+Sn collisions at 270 MeV/u, suggest that the hypothesis of thermal equilibrium breaks down for particles emitted with high transfer momentum. To inspect the system’s properties in such limit, the scaling features of the yield ratios of particles from two systems, a neutron-rich system of \({}^{132}\textrm{Sn}+{}^{124}\textrm{Sn}\) and a nearly symmetric system of \({}^{108}\textrm{Sn}+{}^{112}\textrm{Sn}\), are examined in the framework of the statistical multifragmentation model and the antisymmetrized molecular dynamics model. The isoscaling from low energy particles agree with both models. However the observed breakdown of isoscaling for particles with high transverse momentum cannot be explained by the antisymmetrized molecular dynamics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data can be available on request sent to the corresponding author.]

References

  1. R. Stock, Particle production in high energy nucleus-nucleus collisions, Phys. Rep. 135, 259 (1986). https://www.sciencedirect.com/science/article/pii/0370157386901341

  2. P. Senger, Particle production in heavy-ion collisions. Progr. Particle Nucl. Phys. 53, 1 (2004). https://doi.org/10.1016/j.ppnp.2004.02.005

    Article  Google Scholar 

  3. A. Ono, Dynamics of clusters and fragments in heavy-ion collisions. Progr. Particle Nucl. Phys. 105, 139 (2019). https://doi.org/10.1016/j.ppnp.2018.11.001

    Article  Google Scholar 

  4. N. Ikeno, A. Ono, Y. Nara et al., Probing neutron-proton dynamics by pions. Phys. Rev. C 93, 044612 (2016). https://doi.org/10.1103/PhysRevC.93.044612

    Article  Google Scholar 

  5. J. Hong, P. Danielewicz, Subthreshold pion production within a transport description of central Au + Au collisions. Phys. Rev. C 90, 024605 (2014). https://doi.org/10.1103/PhysRevC.90.024605

    Article  Google Scholar 

  6. H.M. Xu, W.G. Lynch, P. Danielewicz, Residue temperatures in intermediate energy nucleus-nucleus collisions. Phys. Rev. C 50, 1659 (1994). https://doi.org/10.1103/PhysRevC.50.1659

    Article  Google Scholar 

  7. B. Borderie, J.D. Frankland, Liquid-Gas phase transition in nuclei. Progr. Particle Nucl. Phys. 105, 82 (2019). https://doi.org/10.1016/j.ppnp.2018.12.002

    Article  Google Scholar 

  8. H. Wolter, M. Colonna, D. Cozma, P. Danielewicz, C.M. Ko, R. Kumar, A. Ono, M.Y.B. Tsang, J. Xu, Y.-X. Zhang et al., Transport model comparison studies of intermediate-energy heavy-ion collisions. Progr. Particle Nucl. Phys. 125, 103962 (2022). https://doi.org/10.1016/j.ppnp.2022.103962

    Article  Google Scholar 

  9. B.-A. Li, C.M. Ko, Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei. Phys. Rev. Lett. 78, 1644 (1997). https://doi.org/10.1103/PhysRevLett.78.1644

    Article  Google Scholar 

  10. W.P. Tan, B.-A. Li, R. Donangelo, C.K. Gelbke, M.-J. van Goethem, X.D. Liu, W.G. Lynch, S. Souza, M.B. Tsang, G. Verde, A. Wagner, H.S. Xu, Fragment isotope distributions and the isospin dependent equation of state. Phys. Rev. C 64, 051901 (2001). https://doi.org/10.1103/PhysRevC.64.051901

    Article  Google Scholar 

  11. G. Jhang, J. Estee, J. Barney, G. Cerizza, M. Kaneko, J.W. Lee, W.G. Lynch, T. Isobe, M. Kurata-Nishimura, T. Murakami et al., Symmetry energy investigation with pion production from Sn+Sn systems. Phys. Lett. B 813, 136016 (2021). https://doi.org/10.1016/j.physletb.2020.136016

    Article  Google Scholar 

  12. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Statistical multifragmentation of nuclei. Phys. Rep. 257, 133 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

    Article  Google Scholar 

  13. C.B. Das, S. Das Gupta, W.G. Lynch, A.Z. Mekjian, M.B. Tsang, The thermodynamic model for nuclear multifragmentation. Phys. Rep. 406, 1 (2005). https://doi.org/10.1016/j.physrep.2004.10.002

    Article  Google Scholar 

  14. A.S. Botvina, I.N. Mishustin, Statistical description of nuclear break-up. Eur. Phys. J. A 30, 121 (2006). https://doi.org/10.1140/epja/i2005-10316-7

    Article  Google Scholar 

  15. A.S. Botvina, A.S. Iljinov, I.N. Mishustin, J.P. Bondorf, R. Donangelo, K. Sneppen, Statistical simulation of the break-up of highly excited nuclei. Nucl. Phys. A 475, 663 (1987). https://doi.org/10.1016/0375-9474(87)90232-6

  16. W.P. Tan, S.R. Souza, R.J. Charity, R. Donangelo, W.G. Lynch, M.B. Tsang, Isospin effects in nuclear multifragmentation. Phys. Rev. C 68, 034609 (2003). https://doi.org/10.1103/PhysRevC.68.034609

    Article  Google Scholar 

  17. M.B. Tsang, C.K. Gelbke, X.D. Liu, W.G. Lynch, W.P. Tan, G. Verde, H.S. Xu, W.A. Friedman, R. Donangelo, S.R. Souza et al., Isoscaling in statistical models. Phys. Rev. C 64, 054615 (2001). https://doi.org/10.1103/PhysRevC.64.054615

  18. M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, H.S. Xu, Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023 (2001). https://doi.org/10.1103/PhysRevLett.86.5023

    Article  Google Scholar 

  19. H.S. Xu, M.B. Tsang, T.X. Liu, X.D. Liu, W.G. Lynch, W.P. Tan, A. Vander Molen, G. Verde, A. Wagner, H.F. Xi et al., Isospin fractionation in nuclear multifragmentation. Phys. Rev. Lett. 85, 716 (2000). https://doi.org/10.1103/PhysRevLett.85.716

    Article  Google Scholar 

  20. S.R. Souza, M.B. Tsang, B.V. Carlson, R. Donangelo, W.G. Lynch, A.W. Steiner, Temperature effects in nuclear isoscaling. Phys. Rev. C 80, 044606 (2009). https://doi.org/10.1103/PhysRevC.80.044606

    Article  Google Scholar 

  21. M.B. Tsang, T.X. Liu, L. Shi, P. Danielewicz, C.K. Gelbke, X.D. Liu, W.G. Lynch, W.P. Tan, G. Verde, A. Wagner et al., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions. Phys. Rev. Lett. 92, 062701 (2004). https://doi.org/10.1103/PhysRevLett.92.062701

  22. F. Rami, Y. Leifels, B. de Schauenburg, A. Gobbi, B. Hong, J. P. Alard, A. Andronic, R. Averbeck, V. Barret, Z. Basrak et al. (FOPI Collaboration), Isospin tracing: a probe of nonequilibrium in central heavy-ion collisions. Phys. Rev. Lett. 84, 1120 (2000). https://doi.org/10.1103/PhysRevLett.84.1120

  23. M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, H.S. Xu, Conditions for isoscaling in nuclear reactions. Phys. Rev. C 64, 041603 (2001). https://doi.org/10.1103/PhysRevC.64.041603

    Article  Google Scholar 

  24. A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang, Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 68, 051601 (2003). https://doi.org/10.1103/PhysRevC.68.051601

    Article  Google Scholar 

  25. C.O. Dorso, C.R. Escudero, M. Ison, J.A. López, Dynamical aspects of isoscaling. Phys. Rev. C 73, 044601 (2006). https://doi.org/10.1103/PhysRevC.73.044601

    Article  Google Scholar 

  26. E. Geraci, M. Bruno, M. D’Agostino, E. De Filippo, A. Pagano, G. Vannini, M. Alderighi, A. Anzalone, L. Auditore, V. Baran et al., Isoscaling in central 124Sn+64Ni, 112Sn+58Ni collisions at 35 A MeV. Nucl. Phys. A 732, 173 (2004). https://doi.org/10.1016/j.nuclphysa.2003.11.055

    Article  Google Scholar 

  27. W. Trautmann, A.S. Botvina, J. Brzychczyk, A. Le Fevre, P. Pawlowski, C. Sfienti, the ALADIN, and INDRA collaborations, Isoscaling and the symmetry energy in spectator fragmentation, International Workshop on Multifragmentation and Related Topics (IWM 2005), https://doi.org/10.48550/arxiv.nucl-ex/0603027

  28. Q. Fable, A. Chbihi, M. Boisjoli, J.D. Frankland, A. Le Févre, N. Le Neindre, P. Marini, G. Verde, G. Ademard, L. Bardelli et al., Experimental study of the \(^{40,48}\)Ca+ \(^{40,48}\)Ca reactions at 35 MeV/nucleon. Phys. Rev. C 106, 024605 (2022). https://doi.org/10.1103/PhysRevC.106.024605

    Article  Google Scholar 

  29. S. Wuenschel, R. Dienhoffer, G.A. Souliotis, S. Galanopoulos, Z. Kohley, K. Hagel, D.V. Shetty, K. Huseman, L.W. May, S.N. Soisson et al., Isoscaling of fragments with \(Z=1\text{- }17\) from reconstructed quasiprojectiles. Phys. Rev. C 79, 061602 (2009). https://doi.org/10.1103/PhysRevC.79.061602

    Article  Google Scholar 

  30. M. Youngs, A.B. McIntosh, K. Hagel, L. Heilborn, M. Huang, A. Jedele, Z. Kohley, L.W. May, E. McCleskey, A. Zarrella, S.J. Yennello, Observation of different isoscaling behavior between emitted fragments and residues. Nucl. Phys. A 962, 61 (2017). https://doi.org/10.1016/j.nuclphysa.2017.03.009

    Article  Google Scholar 

  31. A.S. Botvina, O.V. Lozhkin, W. Trautmann, Isoscaling in light-ion induced reactions and its statistical interpretation. Phys. Rev. C 65, 044610 (2002). https://doi.org/10.1103/PhysRevC.65.044610

  32. A. Le Fèvre, G. Auger, M.L. Begemann-Blaich, N. Bellaize, R. Bittiger, F. Bocage, B. Borderie, R. Bougault, B. Bouriquet, J.L. Charvet, A. Chbihi, it et al., INDRA and ALADIN Collaborations, Isotopic scaling and the symmetry energy in spectator fragmentation. Phys. Rev. Lett. 94, 162701 (2005). https://doi.org/10.1103/PhysRevLett.94.162701

  33. R. Shane, A.B. McIntosh, T. Isobe, W.G. Lynch, H. Baba, J. Barney, Z. Chajecki, M. Chartier, J. Estee, M. Famiano et al., S\(\pi \)RIT: A time-projection chamber for symmetry-energy studies. Nucl. Instrum. Methods Phys. Res. Sect. A 784, 513 (2015). https://doi.org/10.1016/j.nima.2015.01.026

    Article  Google Scholar 

  34. S. Tangwancharoen, W.G. Lynch, J. Barney, J. Estee, R. Shane, M.B. Tsang, Y. Zhang, T. Isobe, M. Kurata-Nishimura, T. Murakami et al., A gating grid driver for time projection chambers. Nucl. Instrum. Methods Phys. Res. Sect. A 853, 44 (2017). https://doi.org/10.1016/j.nima.2017.02.001

    Article  Google Scholar 

  35. J. Barney, J. Estee, W.G. Lynch, T. Isobe, G. Jhang, M. Kurata-Nishimura, A.B. McIntosh, T. Murakami, R. Shane, S. Tangwancharoen et al., The S\(\pi \)RIT time projection chamber. Rev. Scientific Inst. 92, 063302 (2021). https://doi.org/10.1063/5.0041191

    Article  Google Scholar 

  36. H. Otsu, S. Koyama, N. Chiga, T. Isobe, T. Kobayashi, Y. Kondo, M. Kurokawa, W.G. Lynch, T. Motobayashi, T. Murakami et al., SAMURAI in its operation phase for RIBF users. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 175 (2016). https://doi.org/10.1016/j.nimb.2016.02.056

    Article  Google Scholar 

  37. P. Lasko, M. Adamczyk, J. Brzychczyk, P. Hirnyk, J. Łukasik, P. Pawłowski, K. Pelczar, A. Snoch, A. Sochocka, Z. Sosin et al., KATANA—A charge-sensitive triggering system for the S\(\pi \)RIT experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 856, 92 (2017). https://doi.org/10.1016/j.nima.2017.03.006

    Article  Google Scholar 

  38. M. Kaneko, T. Murakami, K. Miwa, T. Shiozaki, J. Barney, G. Cerizza, J. Estee, T. Isobe, G. Jhang, M. Kurata-Nishimura et al., Multiplicity trigger detector for the S\(\pi \)RIT experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 1039, 167010 (2022). https://doi.org/10.1016/j.nima.2022.167010

    Article  Google Scholar 

  39. G. Jhang, J. Barney, J. Estee, T. Isobe, M. Kaneko, M. Kurata-Nishimura, G. Cerizza, C. Santamaria, J.W. Lee, P.ł Lasko et al., Beam commissioning of the S\(\pi \)RIT time projection chamber. J. Korean Phys. Soc. 69, 144 (2016). https://doi.org/10.3938/jkps.69.144

    Article  Google Scholar 

  40. J.W. Lee, G. Jhang, G. Cerizza, J. Barney, J. Estee, T. Isobe, M. Kaneko, M. Kurata-Nishimura, W.G. Lynch, T. Murakami et al., Charged particle track reconstruction with S\(\pi \)RIT Time Projection Chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 965, 163840 (2020). https://doi.org/10.1016/j.nima.2020.163840

    Article  Google Scholar 

  41. T. Isobe, G. Jhang, H. Baba, J. Barney, P. Baron, G. Cerizza, J. Estee, M. Kaneko, M. Kurata-Nishimura, J.W. Lee et al., Application of the Generic Electronics for Time Projection Chamber (GET) readout system for heavy Radioactive isotope collision experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 899, 43 (2018). https://doi.org/10.1016/j.nima.2018.05.022

    Article  Google Scholar 

  42. C.Y. Tsang, J. Estee, R. Wang, J. Barney, G. Jhang, W.G. Lynch, Z.Q. Zhang, G. Cerizza, T. Isobe, M. Kaneko et al., Space charge effects in the S\(\pi \)RIT time projection chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 959, 163477 (2020). https://doi.org/10.1016/j.nima.2020.163477

    Article  Google Scholar 

  43. J. Estee, W.G. Lynch, J. Barney, G. Cerizza, G. Jhang, J.W. Lee, R. Wang, T. Isobe, M. Kaneko, M. Kurata-Nishimura et al., Extending the dynamic range of electronics in a Time Projection Chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 944, 162509 (2019). https://doi.org/10.1016/j.nima.2019.162509

  44. M. Anderson, J. Berkovitz, W. Betts, R. Bossingham, F. Bieser, R. Brown, M. Burks, M. Calderón de la Barca Sánchez, D. Cebra, M. Cherney, et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. Sect. A 499, 659 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

  45. J.B. Estee, CHARGED PION EMISSION FROM NEUTRON-RICH HEAVY ION COLLISIONS FOR STUDIES ON THE SYMMETRY ENERGY, Ph.D thesis, Michigan State University (2020)

  46. J. Estee, W.G. Lynch, C.Y. Tsang, J. Barney, G. Jhang, M.B. Tsang, R. Wang, M. Kaneko, J.W. Lee, T. Isobe et al., Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett. 126, 162701 (2021). https://doi.org/10.1103/PhysRevLett.126.162701

    Article  Google Scholar 

  47. M. Kaneko, T. Murakami, T. Isobe, M. Kurata-Nishimura, A. Ono, N. Ikeno, J. Barney, G. Cerizza, J. Estee, G. Jhang et al., Rapidity distributions of Z=1 isotopes and the nuclear symmetry energy from Sn+Sn collisions with radioactive beams at 270 MeV/nucleon. Phys. Lett. B 822, 136681 (2021). https://doi.org/10.1016/j.physletb.2021.136681

    Article  Google Scholar 

  48. A. Ono, H. Horiuchi, T. Maruyama, A. Ohnishi, Antisymmetrized version of molecular dynamics with two-nucleon collisions and its application to heavy ion reactions. Progr. Theor. Phys. 87, 1185 (1992). https://doi.org/10.1143/ptp/87.5.1185

    Article  Google Scholar 

  49. C. Cavata, M. Demoulins, J. Gosset, M.-C. Lemaire, D. L’Hôte, J. Poitou, O. Valette, Determination of the impact parameter in relativistic nucleus-nucleus collisions. Phys. Rev. C 42, 1760 (1990). https://doi.org/10.1103/PhysRevC.42.1760

    Article  Google Scholar 

  50. J.E. Barney, CHARGED PION EMISSION FROM \(^{112}\)SN+\(^{124}\)SN AND \(^{124}\)SN+\(^{112}\)SN REACTIONS WITH THE S\(\pi \)RIT TIME PROJECTION CHAMBER, Ph.D thesis, Michigan State University (2019)

  51. C.Y. Tsang, CONSTRAIN NEUTRON STAR PROPERTIES WITH S\(\pi \)RIT EXPERIMENT, Ph.D thesis, Michigan State University (2022)

  52. S. Albergo, S. Costa, E. Costanzo, A. Rubbino, Temperature and free-nucleon densities of nuclear matter exploding into light clusters in heavy-ion collisions. Nuovo Cimento Soc. Ital. Fis. A 89, 1 (1985). https://doi.org/10.1007/BF02773614

    Article  Google Scholar 

  53. G.J. Kunde, S. Gaff, C.K. Gelbke, T. Glasmacher, M.J. Huang, R. Lemmon, W.G. Lynch, L. Manduci, L. Martin, M.B. Tsang et al., Isospin independence of the H-He double isotope ratio “thermometer’’. Phys. Lett. B 416, 56 (1998). https://doi.org/10.1016/S0370-2693(97)01344-0

    Article  Google Scholar 

  54. J. Wang, R. Wada, T. Keutgen, K. Hagel, Y.G. Ma, M. Murray, L. Qin, A. Botvina, S. Kowalski, T. Materna et al., Tracing the evolution of temperature in near Fermi energy heavy ion collisions. Phys. Rev. C 72, 024603 (2005). https://doi.org/10.1103/PhysRevC.72.024603

    Article  Google Scholar 

  55. R. Bougault, E. Bonnet, B. Borderie, A. Chbihi, J.D. Frankland, E. Galichet, D. Gruyer, M. Henri, M. La Commara, N. Le Neindre et al., Equilibrium constants of hydrogen and helium isotopes at low nuclear densities. J. Phys. G 47, 025103 (2020). https://doi.org/10.1088/1361-6471/ab56ba

    Article  Google Scholar 

  56. S.R. Souza, B.V. Carlson, R. Donangelo, Post breakup dynamical evolution of fragments produced in nuclear multifragmentation. Nucl. Phys. A 989, 69 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.017

    Article  Google Scholar 

  57. Akira Ono, Impacts of cluster correlations on heavy-ion collision dynamics. JPS Conf. Proc. 32, 010076 (2020). https://doi.org/10.7566/JPSCP.32.010076

  58. W. Reisdorf, A. Andronic, R. Averbeck, M.L. Benabderrahmane, O.N. Hartmann, N. Herrmann, K.D. Hildenbrand, T.I. Kang, Y.J. Kim, M. Kiš et al., Systematics of central heavy ion collisions in the 1A GeV regime. Nucl. Phys. A 848, 366 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.008

    Article  Google Scholar 

  59. A. Andronic, W. Reisdorf, N. Herrmann, P. Crochet, J.P. Alard, V. Barret, Z. Basrak, N. Bastid, G. Berek, R. Čaplar, et. al., FOPI-Collaboration, Directed flow in Au+Au, Xe+CsI, and Ni+Ni collisions and the nuclear equation of state, Phys. Rev. C 67, 034907 (2003). https://doi.org/10.1103/PhysRevC.67.034907

  60. S. Piantelli, A. Olmi, P.R. Maurenzig, A. Ono, M. Bini, G. Casini, G. Pasquali, A. Mangiarotti, G. Poggi, A.A. Stefanini et al., Comparison between calculations with the AMD code and experimental data for peripheral collisions of \(^{93}\rm Nb\mathit{+^{93}\rm Nb}{,}^{116}\rm Sn \) at 38 MeV/nucleon. Phys. Rev. C 99, 064616 (2019). https://doi.org/10.1103/PhysRevC.99.064616

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Pawel Danielewicz for many fruitful discussions. This work was supported by the U.S. Department of Energy, USA under Grant Nos. DE-SC0021235, DE-NA0003908, DE-FG02-93ER40773, DE-FG02-93ER40773, DE-SC0019209, DE-SC0015266, DE-AC02-05CH11231, U.S. National Science Foundation Grant No. PHY-1565546, the Robert A. Welch Foundation (A-1266 and A-1358), the Japanese MEXT, Japan KAKENHI (Grant-in-Aid for Scientific Research on Innovative Areas) grant No. 24105004, JSPS KAKENHI Grants Nos. JP17K05432, JP19K14709 and JP21K03528, the National Research Foundation of Korea under grant Nos. 2018R1A5A1025563 and 2013M7A1A1075764, the Polish National Science Center(NCN) under contract Nos. UMO-2013/09/B/ST2/04064, UMO-2013/-10/M/ST2/00624, Computing resources were provided by FRIB, the HOKUSAI-Great Wave system at RIKEN, and the Institute for Cyber-Enabled Research at Michigan State University. S.R. Souza acknowledges partial support from CNPq, CAPES, FAPERJ and the use of the supercomputer Lobo Carneiro, where part of the calculations have been carried out. This work has been done as part of the project INCT-Física Nuclear e aplicações, projeto No. 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Lee.

Additional information

Communicated by Carlos Munoz Camacho.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.W., Tsang, M.B., Tsang, C.Y. et al. Isoscaling in central Sn+Sn collisions at 270 MeV/u. Eur. Phys. J. A 58, 201 (2022). https://doi.org/10.1140/epja/s10050-022-00851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00851-2

Navigation