Skip to main content
Log in

Presolar silicon carbide grains of types Y and Z: their strontium and barium isotopic compositions and stellar origins

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We report the Sr and Ba isotopic compositions of 18 presolar SiC grains of types Y (11) and Z (7), rare types commonly argued to have formed in lower-than-solar metallicity asymptotic giant branch (AGB) stars. We find that the Y and Z grains show higher 88Sr/87Sr and more variable 138Ba/136Ba ratios than mainstream (MS) grains. According to FRANEC Torino AGB models, the Si, Sr, and Ba isotopic compositions of our Y and Z grains can be consistently explained if the grains came from low-mass AGB stars with 0.15 Z ≤ Z < 1.00 Z, in which the 13C neutron exposure for the slow neutron-capture process is greatly reduced with respect to that required by MS grains for a 1.0 Z AGB star. This scenario is in line with the previous finding based on Ti isotopes, but it fails to explain the indistinguishable Mo isotopic compositions of MS, Y, and Z grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data from this study are given in Table 1, and the literature data are from the presolar graindatabase which is available online.]

Notes

  1. FRUITY is based on FRANEC (Frascati Raphson-Newton Evolutionary Code) code [24] and stands for FRANEC Repository of Updated Isotopic Tables & Yields [25, 26]. The nonmagnetic FRUITY models are available online at http://fruity.oa-teramo.inaf.it/, while the magnetic FRUITY models are not available online yet.

  2. FUNS stands for FUll Network Stellar and is a more recent version of the original FRANEC code [24]. For a full description of the FUNS code, we refer the reader to [38].

  3. KADoNiS stands for Karlsruhe Astrophysical Database of Nucleosynthesis in Stars. Version 0.3 is available at https://www.kadonis.org/ and version 1.0 is available at https://exp-astro.de/kadonis1.0/.

  4. δ88Sr86 values in [67] were calculated using 86Sr as the denominator isotope and differs from δ88Sr87 values in this study. However, since 86Sr and 87Sr are both pure s-process isotopes and produced together along the same s-process path (see Sect. 4.1), δ88Sr86 and δ88Sr87 values are expected to show the same dependence on the initial stellar metallicity.

  5. In comparison, the 2 M, 1.0 Z FRANEC Torino AGB model calculations in D1.5 to U1.3 cases, which provide good matches to the MS grain data in Fig. 5, predict that the AGB stellar nucleosynthesis falls along slope-0.24 line and slope-0.18 line respectively, in Fig. 6a. Thus, both sets of AGB models support our assumption that AGB nucelsoynthesis follows a trend with a slope of 0.24 in the parent AGB stars of MS grains.

  6. Intrinsic AGB stars are AGB stars that experience or have experienced s-process nucleosynthesis. Extrinsic s-process-enriched stars are stars that have been polluted by a companion AGB star but have not (yet) reached the AGB stage.

  7. ls refers to the abundance of elements at the first s-process peak (e.g., Sr), while hs refers to the abundance of elements at the second s-process peak (e.g., Ba).

References

  1. A. Blanco, A. Borghesi, S. Fonti, V. Orofino, Circumstellar emission from dust envelopes around carbon stars showing the silicon carbide feature. Astron. Astrophys. 330, 505–514 (1998)

    ADS  Google Scholar 

  2. A.K. Speck, A.B. Corman, K. Wakeman, C.H. Wheeler, G. Thompson, Silicon carbide absorption features: Dust formation in the outflows of extreme carbon stars. Astrophys. J. 691, 1202–1221 (2009). https://doi.org/10.1088/0004-637x/691/2/1202

    Article  ADS  Google Scholar 

  3. A.K. Speck, G.D. Thompson, A.M. Hofmeister, The effect of stellar evolution on SiC dust grain sizes. Astrophys. J. 634, 426–435 (2005). https://doi.org/10.1086/496955

    Article  ADS  Google Scholar 

  4. E. Zinner, Presolar grains, in Meteorites and Cosmochemical Processes (Ed. A.M. Davis),Vol. 1 Treatise on Geochemistry, 2nd Ed. (Exec. Eds. H.D. Holland and K.K. Turekian), Elsevier, Oxford, 181–213 (2014).

  5. L.R. Nittler, F. Ciesla, Astrophysics with extraterrestrial materials. Annu. Rev. Astron. Astrophys. 54, 53–93 (2016). https://doi.org/10.1146/annurev-astro-082214-122505

    Article  ADS  Google Scholar 

  6. N. Liu, S. Cristallo, D. Vescovi, Slow neutron-capture process: low-mass asymptotic giant branch stars and presolar silicon carbide grains. Universe 8, 362 (2022). https://doi.org/10.3390/universe8070362

    Article  ADS  Google Scholar 

  7. M. Lugaro, A.M. Davis, R. Gallino et al., Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys. J. 593, 486–508 (2003). https://doi.org/10.1086/376442

    Article  ADS  Google Scholar 

  8. N. Liu, J. Barosch, L.R. Nittler et al., New multielement isotopic compositions of presolar SiC grains: implications for their stellar origins. Astrophys. J. 920, L26 (2021). https://doi.org/10.3847/2041-8213/ac260b

    Article  ADS  Google Scholar 

  9. L.R. Nittler, S. Amari, E. Zinner, S.E. Woosley, R.S. Lewis, Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin. Astrophys. J. 462, L31 (1996). https://doi.org/10.1086/310021

    Article  ADS  Google Scholar 

  10. N. Liu, L.R. Nittler, C.M. O'D. Alexander, and J. Wang, Late formation of silicon carbide in type II supernovae. Sci. Adv. 4, eaao1054 (2018) https://doi.org/10.1126/sciadv.aao1054.

  11. N. Liu, T. Stephan, P. Boehnke et al., J-type carbon stars: a dominant source of 14N-rich presolar SiC grains of type AB. Astrophys. J. 844, L12 (2017). https://doi.org/10.3847/2041-8213/aa7d4c

    Article  ADS  Google Scholar 

  12. T. Stephan, M. Bose, A. Boujibar, et al. The Presolar Grain Database for silicon carbide — grain type assignments. In 52nd Lunar and Planetary Science Conference. Houston, TX, #2358 (2021).

  13. S. Amari, L.R. Nittler, E. Zinner et al., Presolar SiC grains of type Y: origin from low-metallicity asymptotic giant branch stars. Astrophys. J. 546, 248–266 (2001). https://doi.org/10.1086/318230

    Article  ADS  Google Scholar 

  14. S. Amari, L.R. Nittler, E. Zinner, K. Lodders, R.S. Lewis, Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J. 559, 463–483 (2001). https://doi.org/10.1086/322397

    Article  ADS  Google Scholar 

  15. N. Liu, L.R. Nittler, M. Pignatari, C.M. O'D. Alexander, and J. Wang, Stellar origin of 15N-rich presolar SiC grains of type AB: supernovae with explosive hydrogen burning. Astrophys. J. 842, L1 (2017) https://doi.org/10.3847/2041-8213/aa74e5.

  16. N. Liu, T. Stephan, P. Boehnke et al., Common occurrence of explosive hydrogen burning in Type II supernovae. Astrophys. J. 855, 144 (2018). https://doi.org/10.3847/1538-4357/aaab4e

    Article  ADS  Google Scholar 

  17. P. Hoppe, R.J. Stancliffe, M. Pignatari, S. Amari, Isotopic signatures of supernova nucleosynthesis in presolar silicon carbide grains of type AB with supersolar 14N/15N Ratios. Astrophys. J. 887, 8 (2019). https://doi.org/10.3847/1538-4357/ab521c

    Article  ADS  Google Scholar 

  18. A. Boujibar, S. Howell, S. Zhang et al., Cluster analysis of presolar silicon carbide grains: evaluation of their classification and astrophysical implications. Astrophys. J. 907, L39 (2021). https://doi.org/10.3847/2041-8213/abd102

    Article  ADS  Google Scholar 

  19. G. Hystad, A. Boujibar, N. Liu, L.R. Nittler, R.M. Hazen, Evaluation of the classification of pre-solar silicon carbide grains using consensus clustering with resampling methods: an assessment of the confidence of grain assignments. Mon. Not. R. Astron. Soc. 510, 334–350 (2022). https://doi.org/10.1093/mnras/stab3478

    Article  ADS  Google Scholar 

  20. T. Stephan, R. Trappitsch, P. Hoppe et al., Molybdenum isotopes in presolar silicon carbide grains: details of s-process nucleosynthesis in parent stars and implications for r- and p-processes. Astrophys. J. 877, 101 (2019). https://doi.org/10.3847/1538-4357/ab1c60

    Article  ADS  Google Scholar 

  21. E. Zinner, S. Amari, R. Guinness et al., NanoSIMS isotopic analysis of small presolar grains: Search for Si3N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochim. Cosmochim. Acta 71, 4786–4813 (2007). https://doi.org/10.1016/j.gca.2007.07.012

    Article  ADS  Google Scholar 

  22. P. Hoppe, P. Annen, R. Strebel et al., Meteoritic silicon carbide grains with unusual Si isotopic compositions: evidence for an origin in low-mass, low-metallicity asymptotic giant branch stars. Astrophys. J. 487, L101–L104 (1997). https://doi.org/10.1086/310869

    Article  ADS  Google Scholar 

  23. N. Liu, T. Stephan, S. Cristallo et al., Presolar silicon carbide grains of types Y and Z: their molybdenum isotopic compositions and stellar origins. Astrophys. J. 881, 28 (2019). https://doi.org/10.3847/1538-4357/ab2d27

    Article  ADS  Google Scholar 

  24. A. Chieffi and O. Straniero, Isochrones for hydrogen-burning globular cluster stars. I. The metallicity range -2 <= [Fe/H] <= -1. Astrophys. J. Suppl. Ser. 71, 47 (1989) https://doi.org/10.1086/191364.

  25. S. Cristallo, L. Piersanti, O. Straniero, et al., Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. II. The FRUITY database. Astrophys. J. Suppl. Ser. 197, 17 (2011) https://doi.org/10.1088/0067-0049/197/2/17.

  26. S. Cristallo, O. Straniero, R. Gallino et al., Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys. J. 696, 797–820 (2009). https://doi.org/10.1088/0004-637x/696/1/797

    Article  ADS  Google Scholar 

  27. D. Vescovi, S. Cristallo, M. Busso, N. Liu, Magnetic-buoyancy-induced mixing in AGB stars: presolar SiC grains. Astrophys. J. 897, L25 (2020). https://doi.org/10.3847/2041-8213/ab9fa1

    Article  ADS  Google Scholar 

  28. D. Vescovi, S. Cristallo, S. Palmerini, C. Abia, M. Busso, Magnetic-buoyancy-induced mixing in AGB stars: fluorine nucleosynthesis at different metallicities. Astron. Astrophys. 652, A100 (2021). https://doi.org/10.1051/0004-6361/202141173

    Article  ADS  Google Scholar 

  29. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003). https://doi.org/10.1086/375492

    Article  ADS  Google Scholar 

  30. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–194 (2011). https://doi.org/10.1103/RevModPhys.83.157

    Article  ADS  Google Scholar 

  31. N. Liu, R. Gallino, S. Cristallo et al., New constraints on the major neutron source in low-mass AGB stars. Astrophys. J. 865, 112 (2018). https://doi.org/10.3847/1538-4357/aad9f3

    Article  ADS  Google Scholar 

  32. R. Gallino, M. Busso, G. Picchio, C.M. Raiteri, A. Renzini, On the role of low-Mass asymptotic giant branch stars in producing a solar system distribution of s-process isotopes. Astrophys. J. 334, L45 (1988). https://doi.org/10.1086/185309

    Article  ADS  Google Scholar 

  33. S. Bisterzo, R. Gallino, F. Käppeler et al., The branchings of the main s-process: their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 449, 506–527 (2015). https://doi.org/10.1093/mnras/stv271

    Article  ADS  Google Scholar 

  34. N. Liu, M.R. Savina, A.M. Davis et al., Barium isotopic composition of mainstream silicon carbides from Murchison: constraints for s-process nucleosynthesis in asymptotic giant branch stars. Astrophys. J. 786, 66 (2014). https://doi.org/10.1088/0004-637x/786/1/66

    Article  ADS  Google Scholar 

  35. O. Trippella, M. Busso, S. Palmerini, E. Maiorca, and M.C. Nucci, s-processing in AGB stars revisited. II. Enhanced 13C production through MHD-induced mixing. Astrophys. J. 818, 125 (2016) https://doi.org/10.3847/0004-637x/818/2/125.

  36. L. Piersanti, S. Cristallo, O. Straniero, The effects of rotation on s-process nucleosynthesis in asymptotic giant branch stars. Astrophys. J. 774, 98 (2013). https://doi.org/10.1088/0004-637x/774/2/98

    Article  ADS  Google Scholar 

  37. O. Straniero, I. Domínguez, S. Cristallo, R. Gallino, Low-mass AGB stellar models for 0.003 <= Z <= 0.02: basic formulae for nucleosynthesis calculations. Publ. Astron. Soc. Aust. 20, 389–392 (2003). https://doi.org/10.1071/as03041

    Article  ADS  Google Scholar 

  38. O. Straniero, R. Gallino, S. Cristallo, s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 777, 311–339 (2006). https://doi.org/10.1016/j.nuclphysa.2005.01.011

    Article  ADS  Google Scholar 

  39. S. Cristallo, O. Straniero, M.T. Lederer, B. Aringer, Molecular opacities for low-mass metal-poor AGB stars undergoing the third dredge-up. Astrophys. J. 667, 489–496 (2007). https://doi.org/10.1086/520833

    Article  ADS  Google Scholar 

  40. Z.Y. Bao, H. Beer, F. Käppeler et al., Neutron cross sections for nucleosynthesis studies. At. Data Nucl. Data Tables 76, 70–154 (2000). https://doi.org/10.1006/adnd.2000.0838

    Article  ADS  Google Scholar 

  41. D. Vescovi, Mixing and magnetic fields in asymptotic giant branch stars in the framework of FRUITY models. Universe 8, 16 (2021). https://doi.org/10.3390/universe8010016

    Article  ADS  Google Scholar 

  42. M. Jaeger, R. Kunz, A. Mayer et al., 22Ne(α, n)25Mg: the key neutron source in massive stars. Phys. Rev. Lett. 87, 202501 (2001). https://doi.org/10.1103/PhysRevLett.87.202501

    Article  ADS  Google Scholar 

  43. F. Käppeler, M. Wiescher, U. Giesen et al., Reaction rates for 18O(α, γ) 22Ne, 22Ne(α, γ) 26Mg, and 22Ne (α, n) 25Mg in stellar helium burning and s-process nucleosynthesis in massive stars. Astrophys. J. 437, 396–409 (1994). https://doi.org/10.1086/175004

    Article  ADS  Google Scholar 

  44. P. Adsley, U. Battino, A. Best et al., Reevaluation of the 22Ne(α, γ )26Mg and 22Ne(α, n )25Mg reaction rates. Phys. Rev. C 103, 015805 (2021). https://doi.org/10.1103/PhysRevC.103.015805

    Article  ADS  Google Scholar 

  45. M.C. Nucci, M. Busso, Magnetohydrodynamics and deep mixing in evolved stars. I. two- and three-dimensional analytical models for the asymptotic giant branch. Astrophys. J. 787, 141 (2014) https://doi.org/10.1088/0004-637x/787/2/141.

    Article  ADS  Google Scholar 

  46. B. Freytag, H.-G. Ludwig, M. Steffen, Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron. Astrophys. 313, 497–516 (1996)

    ADS  Google Scholar 

  47. F. Herwig, T. Bloecker, D. Schoenberner, M. El Eid, Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars. Astron. Astrophys. 324, L81–L84 (1997)

    ADS  Google Scholar 

  48. U. Battino, M. Pignatari, C. Ritter et al., Application of a theory and simulation-based convective boundary mixing model for AGB star evolution and nucleosynthesis. Astrophys. J. 827, 30 (2016). https://doi.org/10.3847/0004-637x/827/1/30

    Article  ADS  Google Scholar 

  49. M. Busso, R. Gallino, D.L. Lambert, C. Travaglio, V.V. Smith, Nucleosynthesis and mixing on the asymptotic giant branch. III. predicted and observed s-process abundances. Astrophys. J. 557, 802–821 (2001) https://doi.org/10.1086/322258.

    Article  ADS  Google Scholar 

  50. C. Arlandini, F. Käppeler, K. Wisshak et al., Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999). https://doi.org/10.1086/307938

    Article  ADS  Google Scholar 

  51. L.R. Nittler, C.M. O’D. Alexander, Automated isotopic measurements of micron-sized dust: application to meteoritic presolar silicon carbide. Geochim. Cosmochim. Acta. 67, 4961–4980 (2003). https://doi.org/10.1016/s0016-7037(03)00485-x

    Article  ADS  Google Scholar 

  52. T. Stephan, R. Trappitsch, A.M. Davis et al., CHILI - the Chicago Instrument for Laser Ionization - a new tool for isotope measurements in cosmochemistry. Int. J. Mass Spectrom. 407, 1–15 (2016). https://doi.org/10.1016/j.ijms.2016.06.001

    Article  Google Scholar 

  53. T. Stephan, R. Trappitsch, A.M. Davis et al., Strontium and barium isotopes in presolar silicon carbide grains measured with CHILI-two types of X grains. Geochim. Cosmochim. Acta 221, 109–126 (2018). https://doi.org/10.1016/j.gca.2017.05.001

    Article  ADS  Google Scholar 

  54. N. Liu, M.R. Savina, R. Gallino et al., Correlated strontium and barium isotopic compositions of acid-cleaned single mainstream silicon carbides from Murchison. Astrophys. J. 803, 12 (2015). https://doi.org/10.1088/0004-637x/803/1/12

    Article  ADS  Google Scholar 

  55. G.K. Nicolussi, M.J. Pellin, R.S. Lewis et al., Strontium isotopic composition in individual circumstellar silicon carbide grains: a record of s-process nucleosynthesis. Phys. Rev. Lett. 81, 3583–3586 (1998). https://doi.org/10.1103/PhysRevLett.81.3583

    Article  ADS  Google Scholar 

  56. J.G. Barzyk, M.R. Savina, A.M. Davis et al., Constraining the 13C neutron source in AGB stars through isotopic analysis of trace elements in presolar SiC. Meteorit. Planet. Sci. 42, 1103–1119 (2007). https://doi.org/10.1111/j.1945-5100.2007.tb00563.x

    Article  ADS  Google Scholar 

  57. E. Zinner, L.R. Nittler, R. Gallino et al., Silicon and carbon isotopic ratios in AGB stars: SiC grain data, models, and the Galactic evolution of the Si isotopes. Astrophys. J. 650, 350–373 (2006). https://doi.org/10.1086/506957

    Article  ADS  Google Scholar 

  58. N. Liu, Isotopic compositions of s-process elements in acid-cleaned mainstream presolar silicon carbide. Ph.D. Thesis, University of Chicago, Chicago (2014) https://www.proquest.com/docview/1620334945?pq-origsite=gscholar&fromopenview=true.

  59. K. Takahashi, K. Yokoi, Beta-decay rates of highly ionized heavy atoms in stellar interiors. At. Data Nucl. Data Tables 36, 375 (1987). https://doi.org/10.1016/0092-640x(87)90010-6

    Article  ADS  Google Scholar 

  60. K.-A. Li, C. Qi, M. Lugaro et al., The stellar β-decay rate of 134Cs and its impact on the barium nucleosynthesis in the s-process. Astrophys. J. 919, L19 (2021). https://doi.org/10.3847/2041-8213/ac260f

    Article  ADS  Google Scholar 

  61. S. Taioli, D. Vescovi, M. Busso et al., Theoretical estimate of the half-life for the radioactive 134Cs and 135Cs in astrophysical scenarios. Astrophys. J. 933, 158 (2022). https://doi.org/10.3847/1538-4357/ac74b3

    Article  ADS  Google Scholar 

  62. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957). https://doi.org/10.1103/RevModPhys.29.547

    Article  ADS  Google Scholar 

  63. A.G.W. Cameron, Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69, 201 (1957). https://doi.org/10.1086/127051

    Article  ADS  Google Scholar 

  64. K. Lodders, Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021). https://doi.org/10.1007/s11214-021-00825-8

    Article  ADS  Google Scholar 

  65. K. Lodders, B. Fegley Jr., The origin of circumstellar silicon carbide grains found in meteorites. Meteoritics 30, 661 (1995). https://doi.org/10.1111/j.1945-5100.1995.tb01164.x

    Article  ADS  Google Scholar 

  66. K. Lodders, H. Palme, H.-P. Gail, Abundances of the elements in the solar system. Landolt Börnstein 4B, 712 (2009). https://doi.org/10.1007/978-3-540-88055-4_34

    Article  Google Scholar 

  67. M. Lugaro, B. Cseh, B. Világos et al., Origin of large meteoritic SiC stardust grains in metal-rich AGB stars. Astrophys. J. 898, 96 (2020). https://doi.org/10.3847/1538-4357/ab9e74

    Article  ADS  Google Scholar 

  68. P. Hoppe, J. Leitner, J. Kodolányi, C. Vollmer, Isotope systematics of presolar silicate grains: new insights from magnesium and silicon. Astrophys. J. 913, 10 (2021). https://doi.org/10.3847/1538-4357/abef64

    Article  ADS  Google Scholar 

  69. A. Virag, B. Wopenka, S. Amari et al., Isotopic, optical, and trace element properties of large single SiC grains from the Murchison meteorite. Geochim. Cosmochim. Acta 56, 1715–1733 (1992). https://doi.org/10.1016/0016-7037(92)90237-d

    Article  ADS  Google Scholar 

  70. P. Hoppe, S. Amari, E. Zinner, T. Ireland, R.S. Lewis, Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite. Astrophys. J. 430, 870 (1994). https://doi.org/10.1086/174458

    Article  ADS  Google Scholar 

  71. G.R. Huss, I.D. Hutcheon, G.J. Wasserburg, Isotopic systematics of presolar silicon carbide from the Orgueil (CI) chondrite: Implications for Solar System formation and stellar nucleosynthesis. Geochim. Cosmochim. Acta 61, 5117–5148 (1997). https://doi.org/10.1016/s0016-7037(97)00299-8

    Article  ADS  Google Scholar 

  72. C.M.O.D. Alexander, L.R. Nittler, The Galactic evolution of Si, Ti, and O isotopic ratios. Astrophys. J. 519, 222–235 (1999). https://doi.org/10.1086/307340

    Article  ADS  Google Scholar 

  73. F. Gyngard, S. Amari, E. Zinner, K.K. Marhas, Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite. Geochim. Cosmochim. Acta 221, 145–161 (2018). https://doi.org/10.1016/j.gca.2017.09.031

    Article  ADS  Google Scholar 

  74. A.N. Nguyen, L.R. Nittler, C.M.O.D. Alexander, P. Hoppe, Titanium isotopic compositions of rare presolar SiC grain types from the Murchison meteorite. Geochim. Cosmochim. Acta 221, 162–181 (2018). https://doi.org/10.1016/j.gca.2017.02.026

    Article  ADS  Google Scholar 

  75. A.I. Karakas, M. Lugaro, Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 26 (2016). https://doi.org/10.3847/0004-637x/825/1/26

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of Franz Käppeler, grand master of s-process nucleosynthesis and a dear friend to many of the authors. We would like to thank Franz for his lifelong dedication to pushing the limit of neutron capture cross section measurements, without which the scientific return of presolar grain isotope data would be greatly reduced. This work was supported by NASA through grants 80NSSC20K0387 to N.L., NNX10AI63G and NNX17AE28G to L.R.N., and 80NSSC17K0251 and 80NSSC21K0374 to A.M.D. D.V. acknowledges the financial support of the German-Israeli Foundation (GIF No. I-1500-303.7/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liu.

Additional information

Communicated by Nicolas Alamanos.

Appendix

Appendix

Fig. 7
figure 7

Plots of Sr-Mo and Ba-Mo isotopes comparing Y and Z grains from this study and MS grains from [11] (brown circles) and [20] (grey circles) with AGB models. The magnetic FRUITY AGB models are the same as those shown in Figs. 3 and 4. Asteroidal/terrestrial Mo and Ba contaminations dominate the Mo and Ba isotopic compositions of grains in yellow and red shaded areas, respectively, in panels (a) and (b)

It was shown that multielement isotope data can be used to identify contaminated grains [56]. Since we obtained the isotope data of more than one heavy element (Sr, Mo, or Ba) for 15 of the 18 Y and Z grains from this study, we chose δ84Sr87, δ92Mo96, and δ135Ba136 for comparing MS, Y, and Z grains from this study and the literature [11, 23] with magnetic FRUITY AGB models in Fig. 7. The three isotope ratios are chosen because they are least affected by uncertainties in AGB model predictions for the s-process (see [56] for discussion in detail). Figure 7 reveals a good agreement of the magnetic FRUITY AGB models with all but one MS grain from [20]. In comparison, our Y and Z grains and MS grains from [11, 23], all of which were found on the same sample mounts and analyzed in the same CHILI session, generally lie to the right of the model predictions but agree with the models within 2σ errors. The difference between the MS grains from [20] and the MS/Y/Z grains from [11, 23] could point to varying degrees of Mo contamination, but a definitive conclusion is hampered by the large errors and model uncertainties. As pointed out by [23], the Y, Z, and MS grains from [11, 23] likely sampled some Mo contamination because these grains (0.5 − 2 μm in size) are smaller than the MS grains (1.5 − 3 μm) from [20] and are comparable to the laser beam (~ 1 μm) used for sputtering material in the CHILI instrument [52]. The three Mo-contaminated MS grains from [11] (within yellow shaded area in Fig. 7b) were already noted in that study based on their multielement isotope data.

Except for Z grain M3-692 whose Mo isotope data mainly reflect asteroidal/terrestrial Mo, the Mo isotopic signatures of all the other Y and Z grains are dominated by AGB s-process Mo isotopic signatures. We cannot accurately estimate the percentage of asteroidal/terrestrial Mo contamination for each of the grains due to the large errors of their δ135Ba136 values and potential modeling uncertainties. We identified one Ba-contaminated Y grain, M2-A2-G1140 (within red shaded area in Fig. 7b; excluded in Figs. 2, 3, 4, 5). Besides, although Y grain M3-G1207 cannot be explained by the magnetic FRUITY models during the C-rich phase, this grain overlaps with the models during the O-rich phase within 1σ errors in both panels of Fig. 7. Since it is highly unlikely that a meteoritic/terrestrial contaminant has Sr/Mo and Ba/Mo ratios that are similar to those of M3-G1207, the isotopic signature of the grain likely implies reduced s-process isotope enrichments (87Sr, 96Mo, 136Ba) in the envelope of its parent AGB star compared to the AGB model predictions.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Stephan, T., Cristallo, S. et al. Presolar silicon carbide grains of types Y and Z: their strontium and barium isotopic compositions and stellar origins. Eur. Phys. J. A 58, 216 (2022). https://doi.org/10.1140/epja/s10050-022-00838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00838-z

Navigation