Skip to main content
Log in

Peeling away neutron skin in ultracentral collisions of relativistic nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In heavy nuclei the ratio between local densities of neutrons and protons increases towards the nuclear periphery. The excess of neutrons is known as the neutron skin (NS) with a subtle difference (\(<0.5\) fm) between the r.m.s radii of the distributions of neutrons and protons. We show that the presence of NS in \(^{208}\)Pb leads to extra spectator neutrons in ultracentral \(^{208}\)Pb–\(^{208}\)Pb collisions at the CERN SPS and LHC. The yields of spectator neutrons and protons were calculated within a new version of Abrasion–Ablation Monte Carlo for Colliders model (AAMCC-MST) taking into account NS and pre-equilibrium clustering of spectator matter. While the average numbers of spectator neutrons and protons in ultracentral collisions vary insignificantly, the cross sections of emission of certain numbers of spectator neutrons in events with 0,1,...5 spectator protons are changed by 50–250%, depending on the thickness of NS. These cross sections are less sensitive to other parameters in calculations, and their measurements in the ALICE experiment at the LHC will make it possible to restrict the variety of neutron density parameterizations existing for \(^{208}\)Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no new experimental data were created or analyzed in this study.]

References

  1. A.S. Botvina, I.N. Mishustin, M. Begemann-Blaich et al., Multifragmentation of spectators in relativistic heavy-ion reactions. Nucl. Phys. A 584, 737–756 (1995). https://doi.org/10.1016/0375-9474(94)00621-S

    Article  ADS  Google Scholar 

  2. H. Appelshäuser, J. Bächler, S.J. Bailey et al., Spectator Nucleons in Pb+Pb Collisions at 158 A GeV. Eur. Phys. J. A 2, 383–390 (1998). https://doi.org/10.1007/s100500050135

    Article  ADS  Google Scholar 

  3. G. Puddu, R. Arnaldi, E. Chiavassa et al., The zero degree calorimeters for the ALICE experiment. Nucl. Inst. Meth. A 581, 397–401 (2007). https://doi.org/10.1016/j.nima.2007.08.013

    Article  ADS  Google Scholar 

  4. B. Abelev, J. Adam, D. Adamová et al., Centrality determination of Pb–Pb collisions at \(\sqrt{s_{NN}}=2.76\) TeV with ALICE. Phys. Rev. C 88, 044909 (2013). https://doi.org/10.1103/PhysRevC.88.044909

    Article  ADS  Google Scholar 

  5. R.C. Barrett, D.F. Jackson, Nuclear sizes and structure (Clarendon Press, New York, 1977), p.566

    Google Scholar 

  6. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of interaction cross sections and radii of He isotopes. Phys. Lett. B 160, 380–384 (1985). https://doi.org/10.1016/0370-2693(85)90005-X

    Article  ADS  Google Scholar 

  7. P.G. Hansen, A.S. Jensen, B. Jonson, Nuclear halos. Annu. Rev. Nucl. Part. Sci. 45, 591–634 (1995). https://doi.org/10.1146/annurev.ns.45.120195.003111

    Article  ADS  Google Scholar 

  8. A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, B. Kłos, Neutron density distributions deduced from antiprotonic atoms. Phys. Rev. Lett. 87, 82501 (2001). https://doi.org/10.1103/PhysRevLett.87.082501

    Article  ADS  Google Scholar 

  9. I. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

  10. B.A. Brown, Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 85, 5296–5299 (2000). https://doi.org/10.1103/PhysRevLett.85.5296

    Article  ADS  Google Scholar 

  11. M. Centelles, X. Roca-Maza, X. Viñas, M. Warda, Origin of the neutron skin thickness of \(^{208}\)Pb in nuclear mean-field models. Phys. Rev. C 82, 054314 (2010). https://doi.org/10.1103/PhysRevC.82.054314

    Article  ADS  Google Scholar 

  12. M. Warda, X. Viñas, X. Roca-Maza, M. Centelles, Analysis of bulk and surface contributions in the neutron skin of nuclei. Phys. Rev. C 81, 054309 (2010). https://doi.org/10.1103/PhysRevC.81.054309

    Article  ADS  Google Scholar 

  13. C.M. Tarbert, D.P. Watts, D.I. Glazier et al., Neutron skin of \(^{208}\)Pb from coherent pion photoproduction. Phys. Rev. Lett. 112, 242502 (2014). https://doi.org/10.1103/PhysRevLett.112.242502

    Article  ADS  Google Scholar 

  14. D. Adhikari, H. Albataineh, D. Androic et al., Accurate determination of the neutron skin thickness of \(^{208}\)Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021). https://doi.org/10.1103/PhysRevLett.126.172502

    Article  ADS  Google Scholar 

  15. J. Dobaczewski, W. Nazarewicz, T.R. Werner, Neutron radii and skins in the Hartree–Fock–Bogoliubov calculations. Z. Phys. A 354, 27–35 (1996). https://doi.org/10.1007/s002180050009

    Article  ADS  Google Scholar 

  16. C.J. Horowitz, J. Piekarewicz, Neutron star structure and the neutron radius of \(^{208}\)Pb. Phys. Rev. Lett. 86, 5647 (2001). https://doi.org/10.1103/PhysRevLett.86.5647

    Article  ADS  Google Scholar 

  17. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411, 325–375 (2005). https://doi.org/10.1016/j.physrep.2005.02.004

    Article  ADS  Google Scholar 

  18. D.Q. Fang, Y.G. Ma, X.Z. Cai, W.D. Tian, H.W. Wang, Effects of neutron skin thickness in peripheral nuclear reactions. Chin. Phys. Lett. 28, 10–13 (2011). https://doi.org/10.1088/0256-307X/28/10/102102

    Article  Google Scholar 

  19. D.Q. Fang, Y.G. Ma, X.Z. Cai, W.D. Tian, H.W. Wang, Neutron removal cross section as a measure of neutron skin. Phys. Rev. C 81, 047603 (2010). https://doi.org/10.1103/PhysRevC.81.047603

    Article  ADS  Google Scholar 

  20. T.-Z. Yan, S. Li, Impact parameter dependence of the yield ratios of light particles as a probe of neutron skin. Nucl. Sci. Tech. 30, 43 (2019). https://doi.org/10.1007/s41365-019-0572-8

    Article  Google Scholar 

  21. T. Aumann, C.A. Bertulani, F. Schindler, S. Typel, Peeling off neutron skins from neutron-rich nuclei: constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119, 262501 (2017). https://doi.org/10.1103/PhysRevLett.119.262501

    Article  ADS  Google Scholar 

  22. C.A. Bertulani, J. Valencia, Neutron skins as laboratory constraints on properties of neutron stars and on what we can learn from heavy ion fragmentation reactions. Phys. Rev. C 100, 015802 (2019). https://doi.org/10.1103/PhysRevC.100.015802

    Article  ADS  Google Scholar 

  23. S. De, The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies. J. Phys. G: Nucl. Part. Phys. 44, 045104 (2017). https://doi.org/10.1088/1361-6471/aa5689

    Article  ADS  Google Scholar 

  24. H. Paukkunen, Neutron skin and centrality classification in high-energy heavy-ion collisions at the LHC. Phys. Lett. B 745, 73–78 (2015). https://doi.org/10.1016/j.physletb.2015.04.037

    Article  ADS  Google Scholar 

  25. M. Alvioli, M. Strikman, Spin-isospin correlated configurations in complex nuclei and neutron skin effect in W\(^\pm \) production in high-energy proton-lead collisions. Phys. Rev. C 100, 024912 (2019). https://doi.org/10.1103/PhysRevC.100.024912

    Article  ADS  Google Scholar 

  26. H. Li, H.-J. Xu, Y. Zhou, X. Wang, J. Zhao, L.-W. Chen, F. Wang, Probing the neutron skin with ultrarelativistic isobaric collisions. Phys. Rev. Lett. 125, 222301 (2020). https://doi.org/10.1103/physrevlett.125.222301

    Article  ADS  Google Scholar 

  27. I.A. Pshenichnov, N.A. Kozyrev, R.S. Nepeivoda, A.O. Svetlichnyi, N.A. Dmitrieva, Properties of spectator matter in nuclear collisions at NICA. Phys. Part. Nucl. 52, 591–597 (2021). https://doi.org/10.1134/S1063779621040493

    Article  Google Scholar 

  28. U. Dmitrieva, N. Kozyrev, A. Svetlichnyi, I. Pshenichnov, Spectator nucleons in most central collisions of heavy nuclei at NICA. AIP Conf. Proc. 2377, 030005 (2021). https://doi.org/10.1063/5.0063284

    Article  Google Scholar 

  29. N. Kozyrev, A. Svetlichnyi, R. Nepeivoda, I.A. Pshenichnov, Spectator nucleons in ultracentral \(^{208}\)Pb-\(^{208}\)Pb collisions as a probe of nuclear periphery. In: Proceedings of The Ninth Annual Conference on Large Hadron Collider Physics - PoS(LHCP2021), p. 223. Sissa Medialab, Trieste, Italy (2021). https://doi.org/10.22323/1.397.0223. https://pos.sissa.it/397/223

  30. I.A. Pshenichnov, N.A. Kozyrev, A.O. Svetlichnyi, U.A. Dmitrieva, What one can learn by studying spectator remnants in central nucleus–nucleus collisions? Phys. Part. Nucl. 53, 335–341 (2022). https://doi.org/10.1134/S1063779622020691

    Article  Google Scholar 

  31. L.-M. Liu, C.-J. Zhang, J. Zhou, J. Xu, J. Jia, G.-X. Peng, Probing neutron-skin thickness with free spectator neutrons in ultracentral high-energy isobaric collisions (2022) arXiv:2203.09924

  32. A. Svetlichnyi, R. Nepeyvoda, I. Pshenichnov, Using spectator matter for centrality determination in nucleus–nucleus collisions. Particles 4, 227–235 (2021). https://doi.org/10.3390/particles4020021

    Article  Google Scholar 

  33. A. Svetlichnyi, I. Pshenichnov, Formation of free and bound spectator nucleons in hadronic interactions between relativistic nuclei. Bull. Russ. Acad. Sci. Phys. 84, 911–916 (2020). https://doi.org/10.3103/S1062873820080110

    Article  Google Scholar 

  34. R.S. Nepeivoda, A.O. Svetlichnyi, Dependence of n/p-ratio in spectator matter on the energy and mass of colliding nuclei. Mem. Faculty Phys. (1), 2110302 (2021)

  35. R. Nepeivoda, A. Svetlichnyi, N. Kozyrev, I. Pshenichnov, Pre-equilibrium clustering in production of spectator fragments in collisions of relativistic nuclei. Particles 5, 40–51 (2022). https://doi.org/10.3390/particles5010004

    Article  Google Scholar 

  36. C. Loizides, J. Kamin, D. D’Enterria, Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 97, 054910 (2018). https://doi.org/10.1103/PhysRevC.97.054910

    Article  ADS  Google Scholar 

  37. T. Ericson, The statistical model and nuclear level densities. Adv. Phys. 9, 425–511 (1960). https://doi.org/10.1080/00018736000101239

    Article  ADS  Google Scholar 

  38. V.F. Weisskopf, D.H. Ewing, On the yield of nuclear reactions with heavy elements. Phys. Rev. 57, 472–485 (1940). https://doi.org/10.1103/PhysRev.57.472

    Article  ADS  Google Scholar 

  39. E. Fermi, High energy nuclear events. Prog. Theor. Phys. 5, 570–583 (1950). https://doi.org/10.1143/ptp/5.4.570

    Article  ADS  MathSciNet  Google Scholar 

  40. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Statistical multifragmentation of nuclei. Phys. Rep. 257, 133–221 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

    Article  ADS  Google Scholar 

  41. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis et al., Geant4—a simulation toolkit. Nucl. Inst. Meth. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  42. C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94, 024914 (2016). https://doi.org/10.1103/PhysRevC.94.024914

    Article  ADS  Google Scholar 

  43. J.J. Gaimard, K.H. Schmidt, A reexamination of the abrasion–ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531, 709–745 (1991). https://doi.org/10.1016/0375-9474(91)90748-U

    Article  ADS  Google Scholar 

  44. C. Scheidenberger, I.A. Pshenichnov, K. Sümmerer et al., Charge-changing interactions of ultrarelativistic Pb nuclei. Phys. Rev. C 70, 014902 (2004). https://doi.org/10.1103/PhysRevC.70.014902

    Article  ADS  Google Scholar 

  45. D.D. Chinellato, et al. Data-driven model for the emission of spectator nucleons as a function of centrality in Pb-Pb collisions at LHC energies, ALICE-PUBLIC-2020-001 (2020). http://cds.cern.ch/record/2712412

  46. A.S. Botvina, N. Buyukcizmeci, M. Bleicher, Evolution of the statistical disintegration of finite nuclei toward high energy. Phys. Rev. C 106, 014607 (2022). https://doi.org/10.1103/PhysRevC.106.014607

    Article  ADS  Google Scholar 

  47. R.C. Prim, Bell Syst. Tech. J. 36, 1389–1401 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

    Article  ADS  Google Scholar 

  48. V.E. Viola, K. Kwiatkowski, J.B. Natowitz, S.J. Yennello, Breakup densities of hot nuclei. Phys. Rev. Lett. 93, 132701 (2004). https://doi.org/10.1103/PhysRevLett.93.132701

    Article  ADS  Google Scholar 

  49. J.N. De, S.K. Samaddar, X. Viñas, M. Centelles, Nuclear expansion with excitation. Phys. Lett. B 638, 160–165 (2006). https://doi.org/10.1016/j.physletb.2006.05.046

    Article  ADS  Google Scholar 

  50. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  51. V. Weisskopf, Statistics and nuclear reactions. Phys. Rev. 52, 295–303 (1937). https://doi.org/10.1103/PhysRev.52.295

    Article  ADS  MATH  Google Scholar 

  52. U. Dmitrieva, I. Pshenichnov, On the performance of Zero Degree Calorimeters in detecting multinucleon events. Nucl. Instrum. Methods Phys. Res. Sect. A 906, 114–119 (2018). https://doi.org/10.1016/j.nima.2018.07.072

    Article  ADS  Google Scholar 

  53. M. Alvioli, H. Holopainen, K.J. Eskola, M. Strikman, Initial-state anisotropies and their uncertainties in ultrarelativistic heavy-ion collisions from the monte carlo glauber model. Phys. Rev. C 85, 034902 (2012). https://doi.org/10.1103/PhysRevC.85.034902

    Article  ADS  Google Scholar 

  54. M. Alvioli, M. Strikman, Beam fragmentation in heavy ion collisions with realistically correlated nuclear configurations. Phys. Rev. C 83, 044905 (2011). https://doi.org/10.1103/PhysRevC.83.044905

    Article  ADS  Google Scholar 

  55. M. Alvioli, H.J. Drescher, M. Strikman, A Monte Carlo generator of nucleon configurations in complex nuclei including nucleon–nucleon correlations. Phys. Lett. B 680, 225–230 (2009). https://doi.org/10.1016/j.physletb.2009.08.067

    Article  ADS  Google Scholar 

  56. B. Abelev, J. Adam, D. Adamová et al., Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb–Pb collisions at \(\sqrt{s_{{\rm N}N}}=2.76\) TeV. Phys. Rev. Lett. 109, 252302 (2012). https://doi.org/10.1103/PhysRevLett.109.252302

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (I.P.) is grateful to Dariusz Miskowiec and Chiara Oppedisano for the discussions which stimulated the investigation of the effects of neutron skin in ultrarelaticistic \(^{208}\)Pb–\(^{208}\)Pb collisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pshenichnov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Vittorio Somá

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, N., Svetlichnyi, A., Nepeivoda, R. et al. Peeling away neutron skin in ultracentral collisions of relativistic nuclei. Eur. Phys. J. A 58, 184 (2022). https://doi.org/10.1140/epja/s10050-022-00832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00832-5

Navigation