Skip to main content
Log in

Phase transitions and latent heat in magnetized matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Based on the assumption that the QCD phase diagram gives a realistic picture of hadronic and quark matter under different regimes, it is possible to claim that a quark core may be present inside compact objects commonly named hybrid neutron stars or even that a pure strange star may exist. In this work we explore how the phase transition is modified by the presence of strong magnetic fields and how it is impacted by parameters of the quark phase, for which we use the MIT-model with vector interactions. The phase transition is assumed to conserve flavor when hadrons turn into deconfined quarks. The hadronic equation of state is calculated with the NL3\(\omega \rho ^*\) parametrization of quantum hadrodynamics. We find that the magnetic field slightly reduces the pressure and chemical potential of the phase transition and the latent heat, the latter being very model dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results obtained in this work are either numerical or analytical, hence, there is no associated data.]

References

  1. Garima, P.K. Deshwal, M.K. Yadav, AIP Conference Proceedings 2352, 030004 (2021). https://aip.scitation.org/doi/pdf/10.1063/5.0052529

  2. E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017)

    ADS  MathSciNet  Google Scholar 

  3. R. Pasechnik, M. Šumbera, Universe 3, 7 (2017). arXiv:1611.01533

  4. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, Series in High Energy Physics, Cosmology and Gravitation (CRC Press, 2017), ISBN 9781351420945. https://books.google.com.br/books?id=SSw2DwAAQBAJ

  5. N. Glendenning, Compact Stars: Nuclear Physics, Particle Physics and General Relativity, Astronomy and Astrophysics Library (Springer New York, 2012), ISBN 9781468404913. https://books.google.com.br/books?id=cCDlBwAAQBAJ

  6. I. Vidaña, Eur. Phys. J. Plus 133, 445 (2018). arXiv:1805.00837

  7. D.P. Menezes, Universe 7, 267 (2021). arXiv:2106.09515

  8. R. Bellwied, Nuclear. Phys. A 752, 398 (2005). (proceedings of the 22nd International Nuclear Physics Conference (Part 2))

    Google Scholar 

  9. K. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al., Nuclear Phys. A 757, 184 (2005). (first Three Years of Operation of RHIC)

    ADS  Google Scholar 

  10. E. Annala, C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández, A. Vuorinen, JHEP 12, 078 (2018). arXiv:1711.06244

  11. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Nature Phys. 16, 907 (2020). arXiv:1903.09121

  12. L.L. Lopes, D.P. Menezes, Astrophys. J. 936, 41 (2022). https://doi.org/10.3847/1538-4357/ac81c4

    Article  ADS  Google Scholar 

  13. D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)

    ADS  Google Scholar 

  14. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    ADS  Google Scholar 

  15. E. Witten, Phys. Rev. D 30, 272 (1984)

    ADS  Google Scholar 

  16. E. Østgaard, Phys. Rep. 242, 313 (1994)

    ADS  Google Scholar 

  17. S. Schramm, R. Negreiros, J. Steinheimer, T. Schurhoff, V. Dexheimer, Acta Phys. Polon. B 43, 749 (2012). arXiv:1112.1853

  18. G. Mitra, H.S. Sahoo, R. Mishra, P.K. Panda, Phys. Rev. C 105, 045802 (2022)

    ADS  Google Scholar 

  19. M. Hanauske, L.R. Weih, H. Stöcker, L. Rezzolla, Eur. Phys. J. Special Topics 230, 543 (2021)

    ADS  Google Scholar 

  20. A. Borici, Prog. Theor. Phys. Suppl. 153, 335 (2004)

    ADS  Google Scholar 

  21. A. Alexandru, M. Faber, I. Horvath, K.F. Liu, Phys. Rev. D 72, 114513 (2005). arXiv:hep-lat/0507020

  22. T. Mendes, Braz. J. Phys. 37, 597 (2007). arXiv:hep-lat/0609035

  23. T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014). arXiv:1402.5175

  24. V.A. Goy, V. Bornyakov, D. Boyda, A. Molochkov, A. Nakamura, A. Nikolaev, V. Zakharov, PTEP 2017, 031D01 (2017). arXiv:1611.08093

  25. K. Fukushima, T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011). arXiv:1005.4814

  26. S. Kagiyama, S. Hirooka, H. Kikukawa, J. Kikukawa, Progress Theoret. Phys. 69, 579 (1983)

    ADS  Google Scholar 

  27. G. Alaverdyan, Symmetry 13 (2021)

  28. C.A. Graeff, M.D. Alloy, K.D. Marquez, C. Providência, D.P. Menezes, JCAP 01, 024 (2019). arXiv:1806.04170

  29. L.A.H. Mamani, C.V. Flores, V.T. Zanchin, Phys. Rev. D 102, 066006 (2020). arXiv:2006.09401

  30. M. Buballa, Phys. Rept. 407, 205 (2005). arXiv:hep-ph/0402234

  31. M. Buballa, Phys. Rep. 407, 205 (2005)

    ADS  Google Scholar 

  32. S.B. Rüster, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke, Phys. Rev. D 72, 034004 (2005)

    ADS  Google Scholar 

  33. L.L. Lopes, C. Biesdorf, K.D. Marquez, D.P. Menezes, Phys. Scripta 96, 065302 (2021). arXiv:2009.13552

  34. M. Ju, X. Wu, F. Ji, J. Hu, H. Shen, Phys. Rev. C 103, 025809 (2021). arXiv:2102.12276

  35. Z. Bai, Y.x. Liu, AIP Conf. Proc. 2127, 020030 (2019). arXiv:1904.01978

  36. Z. Miao, A. Li, Z. Zhu, S. Han, Astrophys. J. 904, 103 (2020)

    ADS  Google Scholar 

  37. U. Geppert, M. Rheinhardt, J. Gil, Astron. Astrophys. 412, L33 (2003). arXiv:astro-ph/0311121

  38. F. Haberl, A.D. Schwope, V. Hambaryan, G. Hasinger, C. Motch, A &A 403, L19 (2003)

    ADS  Google Scholar 

  39. Q.H. Peng, H. Tong, Mon. Notices R. Astron. Soc. 378, 159 (2007)

    ADS  Google Scholar 

  40. M. Revnivtsev, S. Mereghetti, Space Sci. Rev. 191, 293 (2015). arXiv:1411.5843

  41. D. Lai, S.L. Shapiro, Astrophys. J. 383, 745 (1991)

    ADS  Google Scholar 

  42. S. Bonazzola, E. Gourgoulhon, M. Salgado, J.A. Marck, Astron. Astrophys. 278, 421 (1993)

    ADS  Google Scholar 

  43. M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995). arXiv:gr-qc/9503044

  44. C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001). arXiv:astro-ph/0011148

  45. A.G. Pili, N. Bucciantini, L. Del Zanna, Mon. Notices R. Astron. Soc. 470, 2469 (2017)

    ADS  Google Scholar 

  46. A. Tsokaros, M. Ruiz, S.L. Shapiro, K. Uryū, Phys. Rev. Lett. 128, 061101 (2022). arXiv:2111.00013

  47. E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo, P.L. Springsteen, Phys. Rev. C 82, 065802 (2010)

    ADS  Google Scholar 

  48. M. Strickland, V. Dexheimer, D.P. Menezes, Phys. Rev. D 86, 125032 (2012)

    ADS  Google Scholar 

  49. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    ADS  Google Scholar 

  50. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    ADS  Google Scholar 

  51. Y. Zel’dovich, I. Novikov, Stars and Relativity, Dover Books on Physics (Dover Publications, 2014), ISBN 9780486171326. arXiv:https://books.google.com.br/books?id=69YIBAAAQBAJ

  52. L.L. Lopes, D. Menezes, JCAP 08, 002 (2015). arXiv:1411.7209

  53. D.P. Menezes, L.L. Lopes, Eur. Phys. J. A 52, 17 (2016). arXiv:1505.06714

  54. F. Wu, C. Wu, Z. Ren, Chin. Phys. C 41, 045102 (2017). arXiv:1612.04553

  55. L.L. Lopes, D.P. Menezes, Eur. Phys. J. A 56, 122 (2020)

    ADS  Google Scholar 

  56. B.C.T. Backes, K.D. Marquez, D.P. Menezes, Eur. Phys. J. A 57, 229 (2021). arXiv:2103.14733

  57. R. Gatto, M. Ruggieri, Lect. Notes Phys. 871, 87 (2013). arXiv:1207.3190

  58. G.S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S.D. Katz, A. Schäfer, Phys. Rev. D 86, 071502 (2012)

    ADS  Google Scholar 

  59. V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012). arXiv:1108.4479

  60. V. Dexheimer, R. Negreiros, S. Schramm, M. Hempel, AIP Conf. Proc. 1520, 264 (2013). arXiv:1208.1320

  61. E.S. Fraga, Lect. Notes Phys. 871, 121 (2013). arXiv:1208.0917

  62. N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663, 445 (2008). arXiv:0803.3156

  63. A. Carbone, A. Polls, A. Rios, I. Vidaña, Phys. Rev. C 83, 024308 (2011)

    ADS  Google Scholar 

  64. I. Bombaci, D. Logoteta, P. Panda, C. Providência, I. Vidaña, Phys. Lett. B 680, 448 (2009)

    ADS  Google Scholar 

  65. E. Lope-Oter, F.J. Llanes–Estrada, Phys. Rev. C 105, L052801 (2022). arXiv:2103.10799

  66. P. Costa, M. Ferreira, D.P. Menezes, J.A. Moreira, C.M.C. Providência, Phys. Rev. D 92, 036012 (2015)

    ADS  Google Scholar 

  67. G.A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A.V. Afanasjev, P. Ring, Phys. Lett. B 671, 36 (2009). arXiv:0909.1432

  68. R.W. Romani, D. Kandel, A.V. Filippenko, T.G. Brink, W. Zheng, Astrophys. J. Lett. 934, L18 (2022). arXiv:2207.05124

  69. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R.X. Adhikari, V.B. Adya, C. Affeldt, M. Agathos et al., Astrophys. J. Lett. 896, L44 (2020). arXiv:2006.12611

  70. A. Tsokaros, M. Ruiz, S.L. Shapiro, Astrophys. J. 905, 48 (2020)

    ADS  Google Scholar 

  71. I. Bombaci, A. Drago, D. Logoteta, G. Pagliara, I. Vidaña, Phys. Rev. Lett. 126, 162702 (2021)

    ADS  Google Scholar 

  72. N.N. Pan, X.P. Zheng, J.R. Li, Mon. Not. Roy. Astron. Soc. 371, 1359 (2006). arXiv:astro-ph/0607051

  73. M. Stejner, F. Weber, J. Madsen, Astrophys. J. 694, 1019 (2009). arXiv:0801.0358

  74. T. Klahn, T. Fischer, Astrophys. J. 810, 134 (2015). arXiv:1503.07442

  75. B. Franzon, R.O. Gomes, S. Schramm, Mon. Notices R. Astron. Soc. 463, 571 (2016). arXiv:1608.02845

  76. R.O. Gomes, P. Char, S. Schramm, Astrophys. J. 877, 139 (2019). arXiv:1806.04763

  77. M.B. Albino, R. Fariello, F.S. Navarra, Phys. Rev. D 104, 083011 (2021). arXiv:2106.12956

  78. L.L. Lopes, C. Biesdorf, D.P. Menezes, Phys. Scripta 96, 065303 (2021). arXiv:2005.13136

  79. I. Bombaci, D. Logoteta, Int. J. Modern Phys. D 26, 1730004 (2017)

    ADS  Google Scholar 

  80. J. Walecka, Ann. Phys. 83, 491 (1974)

    ADS  Google Scholar 

  81. J. Boguta, A. Bodmer, Nucl. Phys. A 292, 413 (1977)

    ADS  Google Scholar 

  82. H. Mueller, B.D. Serot, Nucl. Phys. A 606, 508 (1996). arXiv:nucl-th/9603037

  83. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010)

    ADS  Google Scholar 

  84. L.L. Lopes, Communications in Theoretical Physics (2021)

  85. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nuclear Phys. A 881, 62 (2012). (progress in Strangeness Nuclear Physics)

    ADS  Google Scholar 

  86. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    ADS  Google Scholar 

  87. G.J. Mao, A. Iwamoto, Z.X. Li, Chin. J. Astron. Astrophys. 3, 359 (2003)

    ADS  Google Scholar 

  88. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014)

    ADS  Google Scholar 

  89. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    ADS  Google Scholar 

  90. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021)

    ADS  Google Scholar 

  91. R. Essick, I. Tews, P. Landry, A. Schwenk, Phys. Rev. Lett. 127, 192701 (2021)

    ADS  Google Scholar 

  92. L.L. Lopes, D.P. Menezes, Phys. Rev. C 89, 025805 (2014)

    ADS  Google Scholar 

  93. L.L. Lopes, D.P. Menezes, Nucl. Phys. A 1009, 122171 (2021)

    Google Scholar 

  94. T. Miyatsu, M.K. Cheoun, K. Saito, Phys. Rev. C 88, 015802 (2013)

  95. D.J. Millener, C.B. Dover, A. Gal, Phys. Rev. C 38, 2700 (1988)

    ADS  Google Scholar 

  96. J. Schaffner, C. Greiner, H. Stöcker, Phys. Rev. C 46, 322 (1992)

    ADS  Google Scholar 

  97. J. Mareš, E. Friedman, A. Gal, B. Jenning, Nucl. Phys. A 594, 311 (1995)

    ADS  Google Scholar 

  98. P. Khaustov, D.E. Alburger, P.D. Barnes, B. Bassalleck, A.R. Berdoz, A. Biglan, T. Bürger, D.S. Carman, R.E. Chrien, C.A. Davis, The AGS E885 Collaboration et al., Phys. Rev. C 61, 054603 (2000)

  99. J. Schaffner-Bielich, A. Gal, Phys. Rev. C 62, 034311 (2000)

    ADS  Google Scholar 

  100. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    ADS  Google Scholar 

  101. L. Fabbietti, V.M. Sarti, O.V. Doce, Ann. Rev. Nucl. Part. Sci. 71, 377 (2021). arXiv:https://doi.org/10.1146/annurev-nucl-102419-034438

  102. S. Acharya, D. Adamová, S.P. Adhya, A. Adler, J. Adolfsson, M.M. Aggarwal, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed et al. (A Large Ion Collider Experiment Collaboration), Phys. Rev. Lett. 123, 112002 (2019)

  103. E. Friedman, A. Gal, Phys. Lett. B 820, 136555 (2021). arXiv:2104.00421

  104. R. Bhaduri, R. Bhaduri, Models of the Nucleon: From Quarks to Soliton, Advanced book program (Addison-Wesley, Advanced Book Program, 1988), ISBN 9780201156737. arXiv:https://books.google.com.br/books?id=7smBAAAAIAAJ

  105. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). arXiv:hep-lat/0611014

  106. S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 125, 052001 (2020). arXiv:2002.02821

Download references

Acknowledgements

This work is a part of the project INCT-FNA Proc. No. 464898/2014-5. D.P.M. is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) respectively under grant 301155.2017-8 and M.R.P. is supported by Coordenação de Aperfeiçoamanto de Pessoal de Nível Superior (CAPES). M.R.P. thanks fruitful discussions with Carline Biesdorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus R. Pelicer.

Additional information

Communicated by D. N. Voskresensky.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelicer, M.R., Menezes, D.P. Phase transitions and latent heat in magnetized matter. Eur. Phys. J. A 58, 177 (2022). https://doi.org/10.1140/epja/s10050-022-00829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00829-0

Navigation