Skip to main content
Log in

Calculation of \(\alpha \)-decay half-lives for isotopes around \(N=Z\) using different proximity-type potentials

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Within the framework of 16 different versions of proximity potentials, we study the alpha decay half-lives of 21 probable isotopes of nuclei around \(N=Z\) in the range of \(52\le Z\le 56\). The obtained results show that the theoretical half-lives of the Prox. 81 (set III) and Prox. 88 potential models are in very close agreement with the available experimental data. For comparison, the validity of the generalized liquid drop model (GLDM) and effective liquid drop model (ELDM) are also evaluated in reproducing the experimental data of alpha radioactivity half-lives. On the basis of the isotopic dependence of the Coulomb potential barrier and the released energy \(Q_{\alpha }\), we discuss the variation in the penetration probability of \(\alpha \)-particle and alpha decay half-lives with neutron content. The validity of the Geiger–Nuttall (GN) law is examined for \(\alpha \) transitions from the ground state of the selected parent nuclei. The values produced by the present proximity potentials are compared with those obtained by some of the well-known empirical and semi-empirical formulae, including Royer, SemFIS (semi-empirical relationship based on fission theory), Akrawy, MRenB, YQZR, MYQZR, and AKRA. The computed standard deviations of the calculated half-lives in comparison with the experimental data suggest that the SemFIS formula produces the lowest standard deviation among the different formulae for alpha decay of the present nuclei. The present approaches are also employed to predict the alpha radioactivity half-lives for parent nuclei at around \(N=Z\) whose the experimental data are not available for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. R. Zhong-zhou, X. Gong-ou, Phys. Rev. C 36, 456 (1987)

    Article  ADS  Google Scholar 

  2. H. Horiuchi, Nucl. Phys. A 522, 257 (1991)

    Article  ADS  Google Scholar 

  3. F. Garcia, O. Rodriguez, M. Goncalves, S.B. Duarte, O.A.P. Tavares, F. Guzman, J. Phys. G 26, 755 (2000)

    Article  ADS  Google Scholar 

  4. T.N. Ginter, K.E. Gregorich, W. Loveland, D.M. Lee, U.W. Kirbach, R. Sudowe, C.M. Folden III., J.B. Patin, N. Seward, P.A. Wilk, P.M. Zielinski, K. Aleklett, R. Eichler, H. Nitsche, D.C. Hoffman, Phys. Rev. C 67, 064609 (2003)

    Article  ADS  Google Scholar 

  5. P.E. Hodgson, E. Betak, Phys. Rep. 374, 1 (2003)

    Article  ADS  Google Scholar 

  6. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  7. R.D. Herzberg, J. Phys. G 30, R123 (2004)

    Article  Google Scholar 

  8. Y.T.S. Oganessian et al., Phys. Rev. C 72, 034611 (2005)

    Article  ADS  Google Scholar 

  9. D. Seweryniak et al., Phys. Rev. C 73, 061301 (2006)

    Article  ADS  Google Scholar 

  10. S.S. Hosseini, H. Hassanabadi, D.T. Akrawy, S. Zarrinkamar, Eur. Phys. J. Plus 133, 7 (2018)

    Article  Google Scholar 

  11. D.T. Akrawy, K.P. Santhosh, H. Hassanabadi, Phys. Rev. C 100, 034608 (2019)

    Article  ADS  Google Scholar 

  12. G. Gamow, Z. Phys. 51, 204 (1928)

    Article  ADS  Google Scholar 

  13. R.W. Gurney, E.U. Condon, Nature 122, 439 (1928)

    Article  ADS  Google Scholar 

  14. R. Moustabchir, G. Royer, Nucl. Phys. A 683, 266 (2001)

    Article  ADS  Google Scholar 

  15. W. Long, J. Meng, S.G. Zhou, Phys. Rev. C 65, 047306 (2002)

    Article  ADS  Google Scholar 

  16. G. Royer, J. Phys. G 26, 1149 (2000)

    Article  ADS  Google Scholar 

  17. D.N. Poenaru, I.H. Plonski, W. Greiner, Phys. Rev. C 74, 014312 (2006)

    Article  ADS  Google Scholar 

  18. K.P. Santhosh, R.K. Biju, A. Joseph, J. Phys. G 35, 085102 (2008)

    Article  ADS  Google Scholar 

  19. V.Y. Denisov, A.A. Khudenko, Phys. Rev. C 79, 054614 (2009)

    Article  ADS  Google Scholar 

  20. G. Royer, Nucl. Phys. A 848, 279 (2010)

    Article  ADS  Google Scholar 

  21. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 83, 014601 (2011)

    Article  ADS  Google Scholar 

  22. H.C. Manjuntha, K.N. Sridhar, Eur. Phys. J. A 53, 156 (2017)

    Article  ADS  Google Scholar 

  23. J.G. Deng, H.F. Zhang, G. Royer, Phys. Rev. C 101, 034307 (2020)

    Article  ADS  Google Scholar 

  24. D.T. Akrawy, D.N. Poenaru, J. Phys. G 44, 105105 (2017)

    Article  ADS  Google Scholar 

  25. D.T. Akrawy, H. Hassanabadi, S.S. Hosseini, K.P. Santhosh, Nucl. Phys. A 971, 130 (2018)

    Article  ADS  Google Scholar 

  26. D.T. Akrawy, H. Hassanabadi, Y. Qian, K.P. Santhosh, Nucl. Phys. A 975, 19 (2018)

    Article  ADS  Google Scholar 

  27. D.T. Akrawy, A.H. Ahmed, Int. J. Mod. Phys. E 27, 1850068 (2018)

    Article  ADS  Google Scholar 

  28. D.T. Akrawy, H. Hassanabadi, Y. Qian, K.P. Santhosh, Nucl. Phys. A 983, 310 (2019)

    Article  ADS  Google Scholar 

  29. D.T. Akrawy, A.H. Ahmed, Phys. Rev. C 100, 044618 (2019)

    Article  ADS  Google Scholar 

  30. D.T. Akrawy, H. Hassanabadi, S.S. Hosseini, K.P. Santhosh, Int. J. Mod. Phys. E 28, 1950075 (2019)

    Article  ADS  Google Scholar 

  31. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (NY) 105, 427 (1977)

    Article  ADS  Google Scholar 

  32. I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)

    Article  ADS  Google Scholar 

  33. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  34. I. Dutt, R.K. Puri, Phys. Rev. C 81, 047601 (2010)

    Article  ADS  Google Scholar 

  35. L. Zhang, G.L. Zhang, J.C. Yang, W.W. Qu, Nucl. Phys. A 915, 70 (2013)

    Article  ADS  Google Scholar 

  36. H. Hassanabadi, E. Javadimanesh, S. Zarrinkamar, Nucl. Phys. A 906, 84 (2013)

    Article  ADS  Google Scholar 

  37. Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  38. G.L. Zhang, Y.J. Yao, M.F. Guo, M. Pan, G.X. Zhang, X.X. Liu, Nucl. Phys. A 951, 86 (2016)

    Article  ADS  Google Scholar 

  39. K.P. Santhosh, I. Sukumaran, Int. J. Mod. Phys. E 26, 1750003 (2017)

    Article  ADS  Google Scholar 

  40. C.K. Phookan, Chin. J. Phys. 55, 176 (2017)

    Article  Google Scholar 

  41. Y.J. Yao, G.L. Zhang, W.W. Qu et al., Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  42. O.N. Ghodsi, A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016)

    Article  ADS  Google Scholar 

  43. K.P. Santhosh, I. Sukumaran, Eur. Phys. J. Plus 132, 431 (2017)

    Article  Google Scholar 

  44. D. Seweryniak, K. Starosta, C.N. Davids, S. Gros, A.A. Hecht, N. Hoteling, T.L. Khoo, K. Lagergren, G. Lotay, D. Peterson, A. Robinson, C. Vaman, W.B. Walters, P.J. Woods, S. Zhu, Phys. Rev. C 73, 061301(R) (2006)

    Article  ADS  Google Scholar 

  45. I.G. Darby, R.K. Grzywacz, J.C. Batchelder, C.R. Bingham, L. Cartegni, C.J. Gross, M. Hjorth-Jensen, D.T. Joss, S.N. Liddick, W. Nazarewicz, S. Padgett, R.D. Page, T. Papenbrock, M.M. Rajabali, J. Rotureau, K.P. Rykaczewski, Phys. Rev. Lett. 105, 162502 (2010)

    Article  ADS  Google Scholar 

  46. L. Capponi, J.F. Smith, P. Ruotsalainen, C. Scholey, P. Rahkila, K. Auranen, L. Bianco, A.J. Boston, H.C. Boston, D.M. Cullen, X. Derkx, M.C. Drummond, T. Grahn, P.T. Greenlees, L. Grocutt, B. Hadinia, U. Jakobsson, D.T. Joss, R. Julin, S. Juutinen, M. Labiche, M. Leino, K.G. Leach, C. McPeake, K.F. Mulholland, P. Nieminen, D. ODonnell, E. S. Paul, P. Peura, M. Sandzelius, J. Saren, B. Saygi, J. Sorri, S. Stolze, A. Thornthwaite, M. J. Taylor, J. Uusitalo, Phys. Rev. C 94, 024314 (2016)

  47. C. Mazzocchi, R. Grzywacz, S.N. Liddick, K.P. Rykaczewski, H. Schatz, J.C. Batchelder, C.R. Bingham, C.J. Gross, J.H. Hamilton, J.K. Hwang, S. Ilyushkin, A. Korgul, W. Krolas, K. Li, R.D. Page, D. Simpson, J.A. Winger, Phys. Rev. Lett. 98, 212501 (2007)

    Article  ADS  Google Scholar 

  48. L. Cartegni, C. Mazzocchi, R. Grzywacz, I.G. Darby, S.N. Liddick, K.P. Rykaczewski, J.C. Batchelder, L. Bianco, C.R. Bingham, E. Freeman, C. Goodin, C.J. Gross, A. Guglielmetti, D.T. Joss, S.H. Liu, M. Mazzocco, S. Padgett, R.D. Page, M.M. Rajabali, M. Romoli, P.J. Sapple, J. Thomson, H.V. Watkins, Phys. Rev. C 85, 014312 (2012)

  49. J. Fan, X. Chang, Nucl. Phys. A 989, 1 (2019)

    Article  ADS  Google Scholar 

  50. G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  51. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  52. W.M. Seif, M. Ismail, E.T. Zeini, J. Phys. G 44, 055102 (2017)

    Article  ADS  Google Scholar 

  53. X.-D. Sun, J.-G. Deng, D. Xiang, P. Guo, X.-H. Li, Phys. Rev. C 95, 044303 (2017)

    Article  ADS  Google Scholar 

  54. Y. Qian, Z. Ren, J. Phys. G 39, 015103 (2012)

    Article  ADS  Google Scholar 

  55. P. Moller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  56. I. Dutt, R. Bansal, Chin. Phys. Lett. 27, 112402 (2010)

    Article  Google Scholar 

  57. I. Dutt, Pramana 76, 921 (2011)

    Article  ADS  Google Scholar 

  58. C.L. Guo, G.L. Zhang, X.Y. Le, Nucl. Phys. A 897, 54 (2013)

    Article  ADS  Google Scholar 

  59. G.L. Zhang, H.B. Zheng, W.W. Qu, Eur. Phys. J. A 49, 10 (2013)

    Article  ADS  Google Scholar 

  60. R. Bass, Phys. Lett. B 47, 139 (1973)

    Article  ADS  Google Scholar 

  61. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  62. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  63. W. Reisdorf, J. Phys. G 20, 1297 (1994)

    Article  ADS  Google Scholar 

  64. P.R. Christensen, A. Winther, Phys. Lett. B 65, 19 (1976)

    Article  ADS  Google Scholar 

  65. A. Winther, Nucl. Phys. A 594, 203 (1995)

    Article  ADS  Google Scholar 

  66. Y.Z. Zhang, Z.Y. Li, G.L. Yu, Z.Y. Hou, J. Phys. G 41, 055102 (2014)

    Article  ADS  Google Scholar 

  67. M. Goncalves, S.B. Duarte, Phys. Rev. C 48, 2409 (1993)

    Article  ADS  Google Scholar 

  68. Y. Qian, Z. Ren, Phys. Rev. C 85, 027306 (2012)

    Article  ADS  Google Scholar 

  69. D. Ni, Z. Ren, T. Dong, C. Xu, Phys. Rev. C 78, 044310 (2008)

    Article  ADS  Google Scholar 

  70. D.N. Poenaru, W. Greiner, M. Ivascu, D. Mazilu, I.H. Plonski, Z. Phys. A 325, 435 (1986)

    ADS  Google Scholar 

  71. D. Schardt et al., Nucl. Phys. A 326, 65 (1979)

    Article  ADS  Google Scholar 

  72. S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)

    Article  ADS  Google Scholar 

  73. D. Seweryniak et al., Phys. Rev. C 73, 061301 (2006)

    Article  ADS  Google Scholar 

  74. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  75. G. Audi et al., Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  76. R. Wang, R.Y. Wang, Y.B. Qian, Z.Z. Ren, Chin. Phys. C 41, 064103 (2017)

    Article  ADS  Google Scholar 

  77. V.E. Viola, G.T. Seaborg, J. Inorg. Nucl. Chem. Ser. 28, 741 (1966)

    Article  Google Scholar 

  78. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. Lett. Ser. 65, 2975 (1990)

    Article  ADS  Google Scholar 

  79. C. Xu, Z. Ren, Phys. Rev. C 74, 037302 (2006)

    Article  ADS  Google Scholar 

  80. P. Mohr, Eur. Phys. J. A 31, 23 (2007)

    Article  ADS  Google Scholar 

  81. D.N. Poenaru, M. Ivascu, D. Mazilu, J. Phys. Lett. (Paris) 41, L589 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashty T. Akrawy.

Additional information

Communicated by Chong Qi.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaei, R., Mohammadi, S., Akrawy, D.T. et al. Calculation of \(\alpha \)-decay half-lives for isotopes around \(N=Z\) using different proximity-type potentials. Eur. Phys. J. A 58, 179 (2022). https://doi.org/10.1140/epja/s10050-022-00820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00820-9

Navigation