Skip to main content

Advertisement

Log in

Production of neutron-rich heavy nuclei around \(N = 162\) in multinucleon transfer reactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around \(N = 162\) has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of \(^{238}\)U + \(^{248}\)Cm are analyzed and compared with the available experimental data at GSI. Systematics on the production of superheavy nuclei via the collisions of \(^{238}\)U on actinide nuclides \(^{252,254}\)Cf, \(^{254}\)Es and \(^{257}\)Fm is investigated thoroughly. It is found that the shell effect is of importance in the formation of neutron-rich nuclei around \(N~=~162\) owing to the enhancement of fission barrier and neutron separation energy. The fragments in the multinucleon transfer reactions manifest the broad isotopic distribution and are dependent on the beam energy. The polar angles of the fragments tend to the forward emission with increasing the beam energy. The production cross sections of new isotopes are estimated and the heavier targets are available for the neutron-rich superheavy nucleus formation. The optimal reaction system and beam energy are proposed for the future experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426–450 (1939)

    Article  ADS  Google Scholar 

  2. O. Hahn, F. Strassmann, Naturwissenschaften 27, 11–15 (1939)

    Article  ADS  Google Scholar 

  3. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 60 (1966)

    Article  Google Scholar 

  4. A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966)

    Article  ADS  Google Scholar 

  5. P. Möller, J.R. Nix, J. Phys. G 20, 1681 (1994)

    Article  ADS  Google Scholar 

  6. M. Thoennessen, The Discovery of Isotopes: A Complete Compilation (Springer, Heidelberg, 2016)

    Book  MATH  Google Scholar 

  7. Yu.T. Oganessian, A.S. Iljnov, A.G. Demin et al., Nucl. Phys. A 239, 353 (1975)

    Article  ADS  Google Scholar 

  8. Yu.T. Oganessian, A.S. Iljnov, A.G. Demin et al., Nucl. Phys. A 239, 157 (1975)

    Article  ADS  Google Scholar 

  9. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  10. G. Münzenberg, Nucl. Phys. A 944, 5 (2015)

    Article  ADS  Google Scholar 

  11. K. Morita, K. Morimoto, D. Kaji et al., J. Phys. Soc. Jpn. 73, 2593 (2004)

    Article  ADS  Google Scholar 

  12. Yu.T. Oganessian, A.V. Yeremin, A.G. Popeko et al., Nature (Lond.) 400, 242 (1999)

    Article  ADS  Google Scholar 

  13. Yu.T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Phys. Rev. C 62, 041604(R) (2000)

    Article  ADS  Google Scholar 

  14. Yu.T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  15. Yu.T. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

    Article  ADS  Google Scholar 

  16. H. Sakurai, Front. Phys. 13(6), 132111 (2018)

    Article  ADS  Google Scholar 

  17. S. Gales, AIP Conf. Proc. 1224, 424 (2010). https://doi.org/10.1063/1.3431448

    Article  ADS  Google Scholar 

  18. J. Wei et al., Int. J. Mod. Phys. E 28, 1930003 (2019)

    Article  ADS  Google Scholar 

  19. X. Chen, J.C. Yang, J.W. Xia et al., Nucl. Instrum. Methods A 920, 37 (2019)

    Article  ADS  Google Scholar 

  20. A.G. Artukh, V.V. Avdeichikov, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, J. Wilczynski, Nucl. Phys. A 176, 284–288 (1971)

    Article  ADS  Google Scholar 

  21. A.G. Artukh, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, J. Wilczynski, Nucl. Phys. A 211, 299–309 (1973)

    Article  ADS  Google Scholar 

  22. A.G. Artukh, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, J. Wilczynski, Nucl. Phys. A 215, 91–108 (1973)

    Article  ADS  Google Scholar 

  23. K.D. Hildenbrand, H. Freiesleben, F. Phlhofer, W.F.W. Schneider, R. Bock, D.V. Harrach, H.J. Specht, Phys. Rev. Lett. 39, 1065 (1977)

    Article  ADS  Google Scholar 

  24. P. Glässel, D.V. Harrach, Y. Civelekoglu, R. Männer, H.J. Specht, J.B. Wilhelmy, H. Freiesleben, K.D. Hildenbrand, Phys. Rev. Lett. 43, 1483 (1979)

    Article  ADS  Google Scholar 

  25. K.J. Moody, D. Lee, R.B. Welch, K.E. Gregorich, G.T. Seaborg, R.W. Lougheed, E.K. Hulet, Phys. Rev. C 33, 1315 (1986)

    Article  ADS  Google Scholar 

  26. R.B. Welch, K.J. Moody, K.E. Gregorich, D. Lee, G.T. Seaborg, Phys. Rev. C 35, 204 (1987)

    Article  ADS  Google Scholar 

  27. H.M. Devaraja, S. Heinz, O. Beliuskina et al., Phys. Lett. B 748, 199–203 (2015)

    Article  ADS  Google Scholar 

  28. J.S. Barrett, W. Loveland, R. Yanez et al., Phys. Rev. C 91, 064615 (2015)

    Article  ADS  Google Scholar 

  29. E.M. Kozulin, E. Vardaci, G.N. Knyazheva et al., Phys. Rev. C 86, 044611 (2012)

    Article  ADS  Google Scholar 

  30. Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015)

    Article  ADS  Google Scholar 

  31. E.M. Kozulin, V.I. Zagrebaev, G.N. Knyazheva et al., Phys. Rev. C 96, 064621 (2017)

    Article  ADS  Google Scholar 

  32. S. Wuenschel, K. Hagel, M. Barbui et al., Phys. Rev. C 97, 064602 (2018)

    Article  ADS  Google Scholar 

  33. T. Kurtukian-Nieto et al., Phys. Rev. C 89, 024616 (2014)

    Article  ADS  Google Scholar 

  34. Z.Q. Feng, G.M. Jin, J.Q. Li, Phys. Rev. C 80, 057601 (2009)

    Article  ADS  Google Scholar 

  35. G.G. Adamian, N.V. Antonenko, V.V. Sargsyan et al., Phys. Rev. C 81, 024604 (2010)

    Article  ADS  Google Scholar 

  36. G.G. Adamian, N.V. Antonenko, V.V. Sargsyan et al., Phys. Rev. C 81, 057602 (2010)

    Article  ADS  Google Scholar 

  37. A. Winther, Nucl. Phys. A 572, 191 (1994)

    Article  ADS  Google Scholar 

  38. A. Winther, Nucl. Phys. A 594, 203 (1995)

    Article  ADS  Google Scholar 

  39. V.I. Zagrebaev, W. Greiner, Nucl. Phys. A 944, 257 (2015)

    Article  ADS  Google Scholar 

  40. A.V. Karpov, V.V. Saiko, Phys. Rev. C 96, 024618 (2017)

    Article  ADS  Google Scholar 

  41. V.V. Saiko, A.V. Karpov, Phys. Rev. C 99, 014613 (2019)

    Article  ADS  Google Scholar 

  42. C. Golabek, C. Simenel, Phys. Rev. Lett. 103, 042701 (2009)

    Article  ADS  Google Scholar 

  43. K. Sekizawa, K. Yabana, Phys. Rev. C 88, 014614 (2013)

    Article  ADS  Google Scholar 

  44. X. Jiang, N. Wang, Chin. Phys. C 42, 104105 (2018)

    Article  ADS  Google Scholar 

  45. Z. Wu, L. Guo, Phys. Rev. C 100, 014612 (2019)

    Article  ADS  Google Scholar 

  46. K. Sekizawa, S. Ayik, Phys. Rev. C 102, 014620 (2020)

    Article  ADS  Google Scholar 

  47. J. Tian, X. Wu, K. Zhao et al., Phys. Rev. C 77, 064603 (2008)

    Article  ADS  Google Scholar 

  48. K. Zhao, Z. Li, X. Wu et al., Phys. Rev. C 88, 044605 (2013)

    Article  ADS  Google Scholar 

  49. K. Zhao, Z. Li, N. Wang et al., Phys. Rev. C 92, 024613 (2015)

    Article  ADS  Google Scholar 

  50. C.H. Dasso, G. Pollarolo, A. Winther, Phys. Rev. Lett. 73, 1907 (1994)

    Article  ADS  Google Scholar 

  51. C.H. Dasso, G. Pollarolo, A. Winther, Phys. Rev. C 52, 2264 (1995)

    Article  ADS  Google Scholar 

  52. V.V. Volkov, Phys. Rep. 44, 93 (1978)

    Article  ADS  Google Scholar 

  53. Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Phys. Rev. C 76, 044606 (2007)

    Article  ADS  Google Scholar 

  54. Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Nucl. Phys. A 816, 33 (2009)

    Article  ADS  Google Scholar 

  55. W. N\(\ddot{o}\)renberg, Z. Phys. A 274, 241 (1975)

  56. S. Ayik, B. Sch\(\ddot{u}\)rmann, and W. N\(\ddot{o}\)renberg, Z. Phys. A 277, 299 (1976)

  57. Z.Q. Feng, G.M. Jin, F. Fu, J.Q. Li, Nucl. Phys. A 771, 50 (2006)

    Article  ADS  Google Scholar 

  58. Z.Q. Feng, G.M. Jin, F. Fu, J.Q. Li, Chin. Phys. C 31, 366 (2007)

    Google Scholar 

  59. G. Wolschin, W. N\(\ddot{o}\)renberg, Z. Phys. A 284, 209 (1978)

  60. F. Niu, P.H. Chen, H.G. Cheng, Z.Q. Feng, Nucl. Sci. Tech. 32, 103 (2021). https://doi.org/10.1007/s41365-021-00946-3

    Article  Google Scholar 

  61. P.H. Chen, Z.Q. Feng, J.Q. Li, H.F. Zhang, Chin. Phys. C 40, 091002 (2016)

    Article  ADS  Google Scholar 

  62. P.H. Chen, F. Niu, Y.F. Guo et al., Nucl. Sci. Tech. 29, 185 (2018). https://doi.org/10.1007/s41365-018-0521-y

    Article  Google Scholar 

  63. G. Wolschin, W. N\(\ddot{o}\)renberg, Z. Phys. A 284, 209 (1978)

  64. J.V. Kratz, M. Schädel, H.W. Gäggeler, Phys. Rev. C 88, 054615 (2013)

    Article  ADS  Google Scholar 

  65. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, Chin. Phys. C 45, 030001 (2021)

    Article  ADS  Google Scholar 

  66. Z.Q. Feng, Phys. Rev. C 95, 024615 (2017)

    Article  ADS  Google Scholar 

  67. F. Niu, P.H. Chen, Y.F. Guo, C.W. Ma, Z.Q. Feng, Phys. Rev. C 96, 064622 (2017)

    Article  ADS  Google Scholar 

  68. F. Niu, P.H. Chen, Y.F. Guo, C.W. Ma, Z.Q. Feng, Phys. Rev. C 97, 034609 (2018)

    Article  ADS  Google Scholar 

  69. V.I. Zagrebaev, W. Greiner, J. Phys. G 34, 1 (2007)

    Article  ADS  Google Scholar 

  70. C. Simenel, D.J. Hinde, R. du Rietz, M. Dasgupta, M. Evers, C.J. Lin, D.H. Luong, A. Wakhle, Phys. Lett. B 710, 607 (2012)

  71. P.H. Chen, F. Niu, W. Zuo, Z.Q. Feng, Phys. Rev. C 101, 024610 (2020)

  72. F. Niu, P.H. Chen, H.G. Cheng, Z.Q. Feng, Nucl. Sci. Tech. 31, 59 (2020). https://doi.org/10.1007/s41365-020-00770-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Projects No. 12175072 and No. 11722546) and the Talent Program of South China University of Technology (Projects No. 20210115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qing Feng.

Additional information

Communicated by Cedric Simenel.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Feng, ZQ. Production of neutron-rich heavy nuclei around \(N = 162\) in multinucleon transfer reactions. Eur. Phys. J. A 58, 162 (2022). https://doi.org/10.1140/epja/s10050-022-00819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00819-2

Navigation