Skip to main content
Log in

Magnetic moment of the \(X_1(2900)\) state in the diquark–antidiquark picture

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Motivated by the discovery of fully open-flavor tetraquark states \(X_0(2900)\) and \(X_1(2900)\) by the LHCb Collaboration, the magnetic dipole moment of the \(X_1(2900)\) state with the quantum numbers \( J^{P} = 1^{-}\) is determined in the diquark–antidiquark picture using the light-cone sum rules. The numerical result is obtained as \( \mu _{X_1}=0.79^{+0.36}_{-0.39}\,\mu _N\). The magnetic moments of hadrons encompasses useful knowledge on the distributions of charge and magnetization their inside, which can be used to better understand their geometrical shapes and quark-gluon organizations. The observation of the \(X_0(2900)\) and \(X_1(2900)\) as the first two fully open-flavor multiquark states has opened a new window for investigation of the exotic states. The obtained results in the present study may shed light on the future experimental and theoretical searches on the properties of fully open-flavor multiquark states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the numerical and mathematical data have been included in the paper and we have no other data regarding this paper.]

References

  1. R. Aaij et al., (LHCb), Phys. Rev. Lett. 125, 242001 (2020). https://doi.org/10.1103/PhysRevLett.125.242001. arXiv:2009.00025 [hep-ex]

  2. R. Aaij et al., (LHCb), Phys. Rev. D 102, 112003 (2020). https://doi.org/10.1103/PhysRevD.102.112003. arXiv:2009.00026 [hep-ex]

  3. H.-X. Chen, W. Chen, R.-R. Dong, N. Su, Chin. Phys. Lett. 37, 101201 (2020). https://doi.org/10.1088/0256-307X/37/10/101201. arXiv:2008.07516 [hep-ph]

    Article  ADS  Google Scholar 

  4. J. He, D.-Y. Chen, Chin. Phys. C 45, 063102 (2021). https://doi.org/10.1088/1674-1137/abeda8. arXiv:2008.07782 [hep-ph]

    Article  ADS  Google Scholar 

  5. M.-Z. Liu, J.-J. Xie, L.-S. Geng, Phys. Rev. D 102, 091502 (2020). https://doi.org/10.1103/PhysRevD.102.091502. arXiv:2008.07389 [hep-ph]

    Article  ADS  Google Scholar 

  6. M.-W. Hu, X.-Y. Lao, P. Ling, Q. Wang, Chin. Phys. C 45, 021003 (2021). https://doi.org/10.1088/1674-1137/abcfaa. arXiv:2008.06894 [hep-ph]

    Article  ADS  Google Scholar 

  7. S.S. Agaev, K. Azizi, H. Sundu, J. Phys. G 48, 085012 (2021). https://doi.org/10.1088/1361-6471/ac0b31. arXiv:2008.13027 [hep-ph]

    Article  ADS  Google Scholar 

  8. H. Chen, H.-R. Qi, H.-Q. Zheng, Eur. Phys. J. C 81, 812 (2021). https://doi.org/10.1140/epjc/s10052-021-09603-w. arXiv:2108.02387 [hep-ph]

    Article  ADS  Google Scholar 

  9. M. Karlinerand, J.L. Rosner, Phys. Rev. D 102, 094016 (2020). https://doi.org/10.1103/PhysRevD.102.094016. arXiv:2008.05993 [hep-ph]

    Article  ADS  Google Scholar 

  10. X.-G. He, W. Wang, R. Zhu, Eur. Phys. J. C 80, 1026 (2020). https://doi.org/10.1140/epjc/s10052-020-08597-1. arXiv:2008.07145 [hep-ph]

    Article  ADS  Google Scholar 

  11. Z.-G. Wang, Int. J. Mod. Phys. A 35, 2050187 (2020). https://doi.org/10.1142/S0217751X20501870. arXiv:2008.07833 [hep-ph]

    Article  ADS  Google Scholar 

  12. J.-R. Zhang, Phys. Rev. D 103, 054019 (2021). https://doi.org/10.1103/PhysRevD.103.054019. arXiv:2008.07295 [hep-ph]

    Article  ADS  Google Scholar 

  13. G.-J. Wang, L. Meng, L.-Y. Xiao, M. Oka, S.-L. Zhu, Eur. Phys. J. C 81, 188 (2021). https://doi.org/10.1140/epjc/s10052-021-08978-0. arXiv:2010.09395 [hep-ph]

    Article  ADS  Google Scholar 

  14. S.S. Agaev, K. Azizi, H. Sundu, Nucl. Phys. A 1011, 122202 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122202. arXiv:2103.06151 [hep-ph]

    Article  Google Scholar 

  15. X.-H. Liu, M.-J. Yan, H.-W. Ke, G. Li, J.-J. Xie, Eur. Phys. J. C 80, 1178 (2020). https://doi.org/10.1140/epjc/s10052-020-08762-6. arXiv:2008.07190 [hep-ph]

    Article  ADS  Google Scholar 

  16. T.J. Burns, E.S. Swanson, Phys. Lett. B 813, 136057 (2021). https://doi.org/10.1016/j.physletb.2020.136057. arXiv:2008.12838 [hep-ph]

    Article  Google Scholar 

  17. Y. Huang, J.-X. Lu, J.-J. Xie, L.-S. Geng, Eur. Phys. J. C 80, 973 (2020). https://doi.org/10.1140/epjc/s10052-020-08516-4. arXiv:2008.07959 [hep-ph]

    Article  ADS  Google Scholar 

  18. Y.-K. Chen, J.-J. Han, Q.-F. Lü, J.-P. Wang, F.-S. Yu, Eur. Phys. J. C 81, 71 (2021). https://doi.org/10.1140/epjc/s10052-021-08857-8. arXiv:2009.01182 [hep-ph]

    Article  ADS  Google Scholar 

  19. T.J. Burns, E.S. Swanson, Phys. Rev. D 103, 014004 (2021). https://doi.org/10.1103/PhysRevD.103.014004. arXiv:2009.05352 [hep-ph]

    Article  ADS  Google Scholar 

  20. C.-J. Xiao, D.-Y. Chen, Y.-B. Dong, G.-W. Meng, Phys. Rev. D 103, 034004 (2021). https://doi.org/10.1103/PhysRevD.103.034004. arXiv:2009.14538 [hep-ph]

    Article  ADS  Google Scholar 

  21. R.M. Albuquerque, S. Narison, D. Rabetiarivony, G. Randriamanatrika, Nucl. Phys. A 1007, 122113 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122113. arXiv:2008.13463 [hep-ph]

    Article  Google Scholar 

  22. Q.-F. Lü, D.-Y. Chen, Y.-B. Dong, Phys. Rev. D 102, 074021 (2020). https://doi.org/10.1103/PhysRevD.102.074021. arXiv:2008.07340 [hep-ph]

    Article  ADS  Google Scholar 

  23. H. Mutuk, J. Phys. G 48, 055007 (2021). https://doi.org/10.1088/1361-6471/abeb7f. arXiv:2009.02492 [hep-ph]

    Article  ADS  Google Scholar 

  24. Y. Tan, J. Ping, Chin. Phys. C 45, 093104 (2021). https://doi.org/10.1088/1674-1137/ac0ba4. arXiv:2010.04045 [hep-ph]

    Article  ADS  Google Scholar 

  25. L.M. Abreu, Phys. Rev. D 103, 036013 (2021). https://doi.org/10.1103/PhysRevD.103.036013. arXiv:2010.14955 [hep-ph]

    Article  ADS  Google Scholar 

  26. J.-J. Qi, Z.-Y. Wang, Z.-F. Zhang, X.-H. Guo, Eur. Phys. J. C 81, 639 (2021). https://doi.org/10.1140/epjc/s10052-021-09422-z. arXiv:2101.06688 [hep-ph]

    Article  ADS  Google Scholar 

  27. H.-X. Chen, Phys. Rev. D 105, 094003 (2022). https://doi.org/10.1103/PhysRevD.105.094003. arXiv:2103.08586 [hep-ph]

    Article  ADS  Google Scholar 

  28. Y.-K. Hsiao, Y. Yu, Phys. Rev. D 104, 034008 (2021). https://doi.org/10.1103/PhysRevD.104.034008. arXiv:2104.01296 [hep-ph]

    Article  ADS  Google Scholar 

  29. M.-X. Duan, J.-Z. Wang, Y.-S. Li, X. Liu, Phys. Rev. D 104, 034035 (2021). https://doi.org/10.1103/PhysRevD.104.034035. arXiv:2104.09132 [hep-ph]

    Article  ADS  Google Scholar 

  30. S.-Y. Kong, J.-T. Zhu, D. Song, J. He, Phys. Rev. D 104, 094012 (2021). https://doi.org/10.1103/PhysRevD.104.094012. arXiv:2106.07272 [hep-ph]

    Article  ADS  Google Scholar 

  31. X.-K. Dong, B.-S. Zou, Eur. Phys. J. A 57, 139 (2021). https://doi.org/10.1140/epja/s10050-021-00442-7. arXiv:2009.11619 [hep-ph]

    Article  ADS  Google Scholar 

  32. A.E. Bondar, A.I. Milstein, JHEP 12, 015 (2020). https://doi.org/10.1007/JHEP12(2020)015. arXiv:2008.13337 [hep-ph]

    Article  ADS  Google Scholar 

  33. K. Azizi, U. Özdem, J. Phys. G 45, 055003 (2018). https://doi.org/10.1088/1361-6471/aab56b. arXiv:1802.07711 [hep-ph]

    Article  ADS  Google Scholar 

  34. K. Azizi, U. Özdem, Eur. Phys. J. C 78, 698 (2018b). https://doi.org/10.1140/epjc/s10052-018-6187-0. arXiv:1807.06503 [hep-ph]

    Article  ADS  Google Scholar 

  35. K. Azizi, U. Özdem, Phys. Rev. D 104, 114002 (2021). https://doi.org/10.1103/PhysRevD.104.114002. arXiv:2109.02390 [hep-ph]

    Article  ADS  Google Scholar 

  36. P. Ball, V.M. Braun, N. Kivel, Nucl. Phys. B 649, 263 (2003). https://doi.org/10.1016/S0550-3213(02). arXiv:hep-ph/0207307

    Article  ADS  Google Scholar 

  37. K. Azizi, A.R. Olamaei, S. Rostami, Eur. Phys. J. A 54, 162 (2018). https://doi.org/10.1140/epja/i2018-12595-1

    Article  ADS  Google Scholar 

  38. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 114036 (2016). https://doi.org/10.1103/PhysRevD.93.114036. arXiv:1605.02496 [hep-ph]

    Article  ADS  Google Scholar 

  39. B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006). https://doi.org/10.1016/j.ppnp.2005.05.001. arXiv:hep-ph/0502148

    Article  ADS  Google Scholar 

  40. V.M. Belyaev, B.L. Ioffe, Sov. Phys. JETP 57, 716 (1983)

    ADS  Google Scholar 

Download references

Acknowledgements

K. Azizi is thankful to Iran Science Elites Federation (Saramadan) for the partial financial support provided under the grant number ISEF/M/400150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Additional information

Communicated by E. Oset

Appendix: explicit expression of \(\Delta (M^2,s_0)\)

Appendix: explicit expression of \(\Delta (M^2,s_0)\)

In this appendix, we present the explicit expression of the function \(\Delta (M^2,s_0)\) entering into the sum rule for the magnetic moment of the \(X_1\) state. It is obtained as

$$\begin{aligned}&\Delta (M^2,s_0) = -\frac{e_c}{36864 m_c^2 \pi ^6} \Bigg [ 3 m_c^{12} \big (3 I[-6, 4] - 4 I[-5, 3]\big )\nonumber \\&\quad -48 m_c^{10} \big (I[-5, 4] + I[-4, 3]\big ) -48 m_c^9 m_s I[-4, 3] \nonumber \\&\quad + 3 m_c^8 \Big (30 I[-4, 4]+ P_ 1 (I[-4, 2] - 2 I[-3, 1]) \nonumber \\&\quad + 96 m_s P_ 3 \pi ^2 \big (I[-4, 2] - 2 I[-3, 1]\big ) - 24 I[-3, 3]\Big ) \nonumber \\&\quad +144 m_c^7 \big (4 P_ 3 \pi ^2 I[-3, 2] - m_s I[-3, 3]\big )\nonumber \\&\quad - 12 m_c^6 \Big (-32 m_ 0^2 m_s P_ 3 \pi ^2 I[-3, 1] \nonumber \\&\quad + 512 P_ 2^2 \pi ^4 I[-3, 1] + P_1 I[-3, 2] \nonumber \\&\quad + 96 m_s P_ 3 \pi ^2 I[-3, 2] + 6 I[-3, 4] + P_ 1 I[-2, 1]\nonumber \\&\quad + 96 m_s P_ 3 \pi ^2 I[-2, 1] + 4 I[-2, 3]\Big ) \nonumber \\&\quad - 12 m_c^5 \Big (48 P_ 3 \pi ^2 (m_ 0^2 I[-2, 1]+ 2 I[-2, 2]) \nonumber \\&\quad + m_s (P_ 1 I[-2, 1] + 12 I[-2, 3])\Big ) \nonumber \\&\quad + 3 m_c^4 \Big (64 m_ 0^2 m_s P_ 3 \pi ^2 I[-2, 1] \nonumber \\&\quad - 1024 P_ 2^2 \pi ^4 I[-2, 1] + 3 P_ 1 I[-2, 2] + 288 m_s P_ 3 \pi ^2 I[-2, 2] \nonumber \\&\quad + 7 I[-2, 4] - 2 P_ 1 I[-1, 1]- 192 m_s P_ 3 \pi ^2 I[-1, 1] \nonumber \\&\quad - 4 I[-1, 3]\Big ) + 8 \Big (-192 P_ 2^2 \pi ^4 (m_ 0^2 I[0, 0] + 2 I[0, 1]) \nonumber \\&\quad + m_s P_ 3 \pi ^2 \big (P_ 1 I[0, 0] + 24 m_ 0^2 I[0, 1]\big )\Big )- 192 m_c^2 I[0, 3] \nonumber \\&\quad - 16 m_c \Big (P_ 1 P_ 3 \pi ^2 I[0, 0] + 24 m_s \big (-8 P_ 2^2 \pi ^4 I[0, 0] + I[0, 3]\big )\Big ) \nonumber \\&\quad + 12 m_c^3 \big (48 P_ 3 \pi ^2 \big (I[-1, 2] \nonumber \\&\quad - m_ 0^2 I[1, 0]\big )- m_s \big (4 I[-1, 3] + P_ 1 I[1, 0]\big )\Big )\Bigg ]\nonumber \\&\quad +\frac{e_d}{442368 m_c^2 \pi ^6}\Bigg [ f_ {3\gamma } \pi ^2 \Bigg (-11 P_ 1 \big (m_c^6 I[-3, 1] \nonumber \\&\quad + 3 m_c^4 I[-2, 1] + 2 I[0, 1]\big ) I_ 1[\mathcal {A}] + 12 \Big (5 m_c^{10} I[-5, 3] \nonumber \\&\quad - 12 m_c^8 I[-4, 3] -36 m_c^7 m_s I[-3, 2] \end{aligned}$$
$$\begin{aligned}&\quad + m_c^6 \big (48 m_s P_ 3 \pi ^2 I[-3, 1] - 9 I[-3, 3]\big )\nonumber \\&\quad + 24 m_c^5 \big (8 P_ 3 \pi ^2 I[-2, 1] \nonumber \\&\quad + 3 m_s I[-2, 2]\big ) - 2 m_c^4 \big (24 m_s P_ 3 \pi ^2 I[-2, 1] \nonumber \\&\quad + 5 I[-2, 3]\big ) - 36 m_c^3 m_s I[-1, 2] + 48 m_ 0^2 m_c P_ 3 \pi ^2 I[0, 0] \nonumber \\&\quad + 8 m_s P_ 3 \pi ^2 \big (m_ 0^2 I[0, 0] - 12 I[0, 1]\big )\nonumber \\&\quad - 20 I[0, 3]\Big ) I_ 1[{\mathcal {V}}]\Bigg ) + 4 \Bigg (1152 m_c^4 P_ 2^2 \pi ^4 I_ 4[{\mathcal {S}}] I[-2, 1] \nonumber \\&\quad - 6 m_c^5 P_ 1 \big (m_c (2 m_c (m_c + m_s) I[-3, 1] \nonumber \\&\quad + I[-3, 2]) + (3 m_c + 2 m_s) I[-2, 1]\big ) \nonumber \\&\quad + 9 m_c^4 P_ 1 I[-2, 2] - 6 m_c^4 P_ 1 I[-1, 1] \nonumber \\&\quad - 6 m_c^3 m_s P_ 1 I[-1, 1] + 12 m_c^3 m_s P_ 1 I[0, 0] \nonumber \\&\quad + 16 m_c P_ 1 P_ 3 \pi ^2 I[0, 0] +8 m_s P_ 1 P_ 3 \pi I[0, 0] \nonumber \\&\quad - 1152 m_c m_s P_ 2^2 \pi ^4 I_ 4[\mathcal {S}] I[0, 0] - 48 m_c m_s P_ 1 I[0, 1] \nonumber \\&\quad + 1152 P_ 2^2 \pi ^4 I_ 4[{\mathcal {S}}] I[0, 1] - 144 P_ 2^2 \pi ^4 \big (6 m_c^6 I[-3, 1] \nonumber \\&\quad + 4 m_c^4 I[-2, 1] + m_ 0^2 I[0, 0] + 2 I[0, 1]\big ) I_ 1[\mathcal {S}] \nonumber \\&\quad + 9 P_ 1 I[0, 2] + 18 m_c^3 m_s P_ 1 I[1, 0] \nonumber \\&\quad + 2 f_ {3\gamma } P_ 1 \pi ^2 \big (3 m_c^6 I[-3, 1]\nonumber \\&\quad + 2 m_c^4 I[-2, 1] + 3 I[0, 1] + 2 m_c^3 m_s I[1, 0]\big ) I_ 6[\psi _a] \nonumber \\&\quad + 4 f_ {3\gamma } P_ 1 \pi ^2 \big (3 m_c^6 I[-3, 1] \nonumber \\&\quad + 2 m_c m_s I[0, 0] - I[0, 1]\big ) \psi ^a[u_ 0]\Bigg )\Bigg ] \nonumber \\&\quad +\frac{e_u}{442368 m_c^2 \pi ^6}\Bigg [ f_ {3\gamma } \pi ^2 \Bigg (12 \Big (5 m_c {10} I[-5, 3] \nonumber \\&\quad - 12 m_c^8 I[-4, 3] - 36 m_c^7 m_s I[-3, 2]\nonumber \\&\quad + m_c^6 \big (48 m_s P_ 3 \pi ^2 I[-3, 1] \nonumber \\&\quad - 9 I[-3, 3]\big ) + 24 m_c^5 \big (8 P_ 3 \pi ^2 I[-2, 1] + 3 m_s I[-2, 2]\big ) \nonumber \\&\quad - 2 m_c^4 \big (24 m_s P_ 3 \pi ^2 I[-2, 1] + 5 I[-2, 3]\big ) \nonumber \\&\quad - 36 m_c^3 m_s I[-1, 2] + 48 m_ 0^2 m_c P_ 3 \pi ^2 I[0, 0] \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad + 8 m_s P_ 3 \pi ^2 \big (m_ 0^2 I[0, 0] - 12 I[0, 1]\big ) - 44 I[0, 3]\Big ) I_ 2[{\mathcal {V}}] \nonumber \\&\quad + P_ 1 \Big (11 \big (m_c^6 I[-3, 1] + 3 m_c^4 I[-2, 1] \nonumber \\&\quad + 2 I[0, 1]\big ) I_ 2[{\mathcal {A}}] + 8 \big (3 m_c^6 I[-3, 1] \nonumber \\&\quad + 2 m_c^4 I[-2, 1] + 3 I[0, 1] \nonumber \\&\quad + 2 m_c^3 m_s I[1, 0]\big ) I_ 6[\psi ^a] \nonumber \\&\quad + 16 \big (3 m_c^6 I[-3, 1] + 2 m_c m_s I[0, 0] \nonumber \\&\quad -I[0, 1]\big ) \psi ^a[u_ 0])\Bigg ) - 24 m_c^5 (3 m_c + 2 m_s) P_ 1 I[-2, 1] \nonumber \\&\quad - 4608 P_ 2^2 \pi ^4 \big (m_c^4 I[-2, 1] - m_c m_s I[0, 0] + I[0, 1]\big ) I_ 3[\mathcal {S}] \nonumber \\&\quad + 576 P_ 2^2 \pi ^4 \big (6 m_c^6 I[-3, 1] + 4 m_c^4 I[-2, 1] + m_ 0^2 I[0, 0] \nonumber \\&\quad + 2 I[0, 1]\big ) I_ 2[{\mathcal {S}}] + 4 P_ 1 \Big (m_c^4 (9 I[-2, 2] - 6 I[-1, 1])\nonumber \\&\quad + 8 m_s P_ 3 \pi ^2 I[0, 0] + 16 m_c \big (P_ 3 \pi ^2 I[0, 0] - 3 m_s I[0, 1]\big )\nonumber \\&\quad + 9 I[0, 2] - 6 m_c^3 m_s (I[-1, 1] - 2 I[0, 0] - 3 I[1, 0])\Big )\Bigg ]\nonumber \\&\quad -\frac{e_s}{221184 m_c^2 \pi ^4} \Bigg [ m_c^{12} (6 I[-6, 4] + 8 I[-5, 3]) \nonumber \\&\quad - 24 m_c {10} (I[-5, 4] - I[-4, 3]) \nonumber \\&\quad +m_c^8 \big (P1 I[-4, 2] + 30 I[-4, 4] \nonumber \\&\quad + 2 P_1 I[-3, 1] +24 I[-3, 3]\big ) \nonumber \\&\quad + 2 m_c^6 \big (512 P_ 2^2 \pi ^4 I[-3, 1] - P_ 1 I[-3, 2]\nonumber \\&\quad - 6 I[-3, 4] + P_ 1 I[-2, 1] + 4 I[-2, 3]\big ) \nonumber \\&\quad + 1024 P_ 2^2 \pi ^4 I[0, 1] - 3 P_ 1 I[0, 2] + 64 m_c^2 I[0, 3] \end{aligned}$$
$$\begin{aligned}&\quad + P_ 3 \Bigg (864 \big (m_c^6 I[-3, 2] - m_c^4 I[-2, 2]\big )\mathcal {A}[u_ 0] \nonumber \\&\quad - 432 m_c^2 \big (I_ 4[\mathcal {S}] + I_ 4[\mathcal {T}_1] +I_ 4[\mathcal {T}_2] - I_ 4[\mathcal {T}_3] \nonumber \\&\quad - I_ 4[\mathcal {T}_4] - I_ 4[\mathcal {\tilde{S}}]\big ) \big (m_c^4 I[-3, 2] \nonumber \\&\quad - 2 m_c^2 I[-2, 2] + I[-1, 2]\big ) \nonumber \\&\quad + P_ 1 \Big (23 I_ 4[\mathcal {S}] + 23 I_ 4[\mathcal {T}_1] +23 I_ 4[\mathcal {T}_2]\nonumber \\&\quad - 12 \big (I_ 4[\mathcal {T}_3] + I_ 4[\mathcal {T}_4] + I_ 4[\mathcal {\tilde{S}}]\big )\Big ) I[0, 0] \nonumber \\&\quad + 24 \Big (36 m_c^4 (m_c^4 I[-4, 2] - 2 m_c^2 I[-3, 2] \nonumber \\&\quad + I[-2, 2]) - P_ 1 I[0, 0]\Big ) I_ 6[h_ {\gamma }]\Bigg )\nonumber \\&\quad - f_{3\gamma } \Bigg (144 m_c^8 I_ 1[\mathcal {A}] I[-4, 3] \nonumber \\&\quad + 144 m_c^8 I_ 1[\mathcal {V}] I[-4, 3] + 288 m_c^6 I_ 1[\mathcal {A}] I[-3, 3] \nonumber \\&\quad + 288 m_c^6 I_ 1[\mathcal {V}] I[-3, 3] \nonumber \\&\quad + 23 m_c^4 P_ 1 I_ 1[\mathcal {A}] I[-2, 1]+ 23 m_c^4 P_ 1 I_ 1[\mathcal {V}] I[-2, 1] \nonumber \\&\quad + 144 m_c^4 I_ 1[\mathcal {A}] I[-2, 3] + 144 m_c^4 I_ 1[\mathcal {V}] I[-2, 3] \nonumber \\&\quad + 23 P_ 1 I_ 1[\mathcal {A}] I[0, 1] + 23 P_ 1 I_ 1[\mathcal {V}] I[0, 1]\nonumber \\&\quad + 576 I_ 1[\mathcal {A}] I[0, 3] + 576 I_ 1[\mathcal {V}] I[0, 3]\nonumber \\&\quad + 24 \Big (m_c^6 (12 m_c^4 I[-5, 3] + 24 m_c^2 I[-4, 3]\nonumber \\&\quad + P_ 1 I[-3, 1] + 12 I[-3, 3]) - P_ 1 I[0, 1] \nonumber \\&\quad + 48 I[0, 3]\Big ) I_ 6[\psi ^a] \nonumber \\&\quad + 96 \Big (m_c^6 (12 m_c^4 I[-5, 3] + 24 m_c^2 I[-4, 3] \nonumber \\&\quad + P_ 1 I[-3, 1] + 12 I[-3, 3]) + P_ 1 I[0, 1] \nonumber \\&\quad + 48 I[0, 3]\Big ) I_ 6[\varphi _{\gamma }] \nonumber \\&\quad + 576 m_c^{10} I[-5, 3] \psi ^a[u_ 0] + 48 m_c^6 P_ 1 I[-3, 1] \psi ^a[u_ 0] \nonumber \\&\quad - 576 m_c^6 I[-3, 3] \psi ^a[u_ 0] + 48 P_ 1 I[0, 1] \psi ^a[u_ 0] \nonumber \\&\quad + 48 \Big (m_c^6 \big (12 m_c^4 I[-5, 3]\nonumber \\&\quad + 24 m_c^2 I[-4, 3] + P_ 1 I[-3, 1] \nonumber \\&\quad + 12 I[-3, 3]\big ) + P_ 1 I[0, 1] \nonumber \\&\quad + 48 I[0, 3]\Big ) \varphi _{\gamma }[u_ 0]\Bigg )\Bigg ], \end{aligned}$$
(20)

where \(P_1 =\langle g_s^2 G^2\rangle \) is gluon condensate, \(P_2 =\langle \bar{q} q \rangle \) stands for u/d quark condensate, and \(P_3 = \langle \bar{s} s \rangle \) represents the s-quark condensate. The functions I[nm], \(I_1[\mathcal {A}]\)\(I_2[\mathcal {A}]\), \(I_3[\mathcal {A}]\)\(I_4[\mathcal {A}]\)\(I_5[\mathcal {A}]\) and \(I_6[\mathcal {A}]\) are defined as

$$\begin{aligned} I[n,m]&= \int _{m_c^2}^{s_0} ds \int _{m_c^2}^s dl~ e^{-s/M^2}~\frac{(s-l)^m}{l^n}\\ I_1[\mathcal {A}]&=\int D_{\alpha _i} \int _0^1 dv~ \mathcal {A}(\alpha _{\bar{q}},\alpha _q,\alpha _g) \delta '(\alpha _ q +\bar{v} \alpha _g-u_0),\\ I_2[\mathcal {A}]&=\int D_{\alpha _i} \int _0^1 dv~ \mathcal {A}(\alpha _{\bar{q}},\alpha _q,\alpha _g) \delta '(\alpha _{\bar{q}}+ v \alpha _g-u_0),\\ I_3[\mathcal {A}]&=\int _0^1 du~ A(u)\delta '(u-u_0),\\ I_4[\mathcal {A}]&=\int D_{\alpha _i} \int _0^1 dv~ \mathcal {A}(\alpha _{\bar{q}},\alpha _q,\alpha _g) \delta (\alpha _ q +\bar{v} \alpha _g-u_0),\\ I_5[\mathcal {A}]&=\int D_{\alpha _i} \int _0^1 dv~ \mathcal {A}(\alpha _{\bar{q}},\alpha _q,\alpha _g) \delta (\alpha _{\bar{q}}+ v \alpha _g-u_0),\\ I_6[\mathcal {A}]&=\int _0^1 du~ A(u), \end{aligned}$$

where \(\mathcal {A}\) stands for the corresponding photon DAs and \( D_{\alpha _i} \) is the measure defined as

$$\begin{aligned} \int \mathcal{D} \alpha _i = \int _0^1 d \alpha _{\bar{q}} \int _0^1 d \alpha _q \int _0^1 d \alpha _g \delta (1-\alpha _{\bar{q}}-\alpha _q-\alpha _g). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdem, U., Azizi, K. Magnetic moment of the \(X_1(2900)\) state in the diquark–antidiquark picture. Eur. Phys. J. A 58, 171 (2022). https://doi.org/10.1140/epja/s10050-022-00815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00815-6

Navigation