Skip to main content
Log in

Effects of beta function on mass and melting temperature for scalar glueballs in AdS/QCD models at finite temperature

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We consider an extension to finite temperature in an AdS/ QCD model, which regards anomalous dimension contributions to get a bulk mass depending on beta function. We study the effect of beta function on mass as a function of temperature and melting temperature for scalar glueballs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Generalized parton distributions in AdS/QCD. Phys. Rev. D 83, 036001 (2011). arXiv:1010.2815

    Article  ADS  Google Scholar 

  2. N.R.F. Braga, A. Vega, Deep inelastic scattering of baryons in a modified soft wall model. Eur. Phys. J. C 72, 2236 (2012). arXiv:1110.2548

    Article  ADS  Google Scholar 

  3. S.J. Brodsky, G.F. de Teramond, Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 96, 201601 (2006). arXiv:hep-ph/0602252

    Article  ADS  Google Scholar 

  4. P. Colangelo, F. Giannuzzi, S. Nicotri, Holographic Approach to Finite Temperature QCD: The Case of Scalar Glueballs and Scalar Mesons. Phys. Rev. D 80, 094019 (2009). arXiv:0909.1534

    Article  ADS  Google Scholar 

  5. L.-X. Cui, Z. Fang, Y.-L. Wu, Thermal Spectral Function and Deconfinement Temperature in Bulk Holographic AdS/QCD with Back Reaction of Bulk Vacuum. Chin. Phys. C 40, 063101 (2016). arXiv:1404.0761

    Article  ADS  Google Scholar 

  6. M. Fujita, K. Fukushima, T. Misumi, and author M. Murata, Finite-temperature spectral function of the vector mesons in an AdS/QCD model, Phys. Rev. D 80, 035001 ( 2009), arXiv:0903.2316

  7. M. A. Martin Contreras, S. Diles, and A. Vega, Heavy quarkonia spectroscopy at zero and finite temperature in bottom-up AdS/QCD, Phys. Rev. D 103, 086008 ( 2021), arXiv:2101.06212

  8. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Y. Trifonov, Baryons in a soft-wall AdS-Schwarzschild approach at low temperature, Phys. Rev. D 99, 114023 ( 2019a), arXiv:1905.02577

  9. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Y. Trifonov, Mesons in a soft-wall AdS-Schwarzschild approach at low temperature, Phys. Rev. D 99, 054030 ( 2019b), arXiv:1902.01312

  10. A. Stoffers, I. Zahed, Improved AdS/QCD model with matter. Phys. Rev. D 83, 055016 (2011). arXiv:1009.4428

    Article  ADS  Google Scholar 

  11. T. Alho, M. Järvinen, K. Kajantie, author E. Kiritsis, C. Rosen, and K. Tuominen, A holographic model for QCD in the Veneziano limit at finite temperature and density, JHEP 04, 124, note , arXiv:1312.5199

  12. J. Erlich, E. Katz, D. T. Son, and author M. A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95, 261602 ( 2005), arXiv:hep-ph/0501128

  13. G.F. de Teramond, S.J. Brodsky, Hadronic spectrum of a holographic dual of QCD. Phys. Rev. Lett. 94, 201601 (2005). arXiv:hep-th/0501022

    Article  ADS  Google Scholar 

  14. A. Karch, E. Katz, D. T. Son, and author M. A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74, 015005 ( 2006), arXiv:hep-ph/0602229

  15. P. Colangelo, F. De Fazio, F. Jugeau, and author S. Nicotri, On the light glueball spectrum in a holographic description of QCD, Phys. Lett. B 652, 73 ( 2007), arXiv:hep-ph/0703316

  16. S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008). arXiv:0707.3859

    Article  ADS  Google Scholar 

  17. H. Forkel, M. Beyer, and T. Frederico, Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD, JHEP 07, 077, arXiv:0705.1857

  18. E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega, and H. Boschi-Filho, Hadronic spectra from deformed AdS backgrounds, Chin. Phys. C 44, 064104 ( 2020), arXiv:1903.06269

  19. N. R. F. Braga and L. F. Ferreira, Quasinormal modes for quarkonium in a plasma with magnetic fields, Phys. Lett. B 795, 462 ( 2019), arXiv:1905.11309

  20. D. Li and M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP 11, 088, arXiv:1303.6929

  21. M. A. Martin Contreras and A. Vega, Nonlinear Regge trajectories with AdS/QCD, Phys. Rev. D 102, 046007 ( 2020), arXiv:2004.10286

  22. A. Vega, I. Schmidt, Hadrons in AdS/QCD correspondence. Phys. Rev. D 79, 055003 (2009). arXiv:0811.4638

    Article  ADS  Google Scholar 

  23. A. Vega, I. Schmidt, Modes with variable mass as an alternative in AdS / QCD models with chiral symmetry breaking. Phys. Rev. D 82, 115023 (2010). arXiv:1005.3000

    Article  ADS  Google Scholar 

  24. A. Vega, I. Schmidt, A chiral symmetry breaking AdS / QCD model with scalar interactions. Phys. Rev. D 84, 017701 (2011). arXiv:1104.4365

    Article  ADS  Google Scholar 

  25. H. Forkel, Light scalar tetraquarks from a holographic perspective. Phys. Lett. B 694, 252 (2011). arXiv:1007.4341

    Article  ADS  Google Scholar 

  26. Z. Abidin, C.E. Carlson, Nucleon electromagnetic and gravitational form factors from holography. Phys. Rev. D 79, 115003 (2009). arXiv:0903.4818

    Article  ADS  Google Scholar 

  27. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Nucleon structure including high Fock states in AdS/QCD. Phys. Rev. D 86, 036007 (2012). arXiv:1204.6612

    Article  ADS  Google Scholar 

  28. I. Kirsch, Spectroscopy of fermionic operators in AdS/CFT, JHEP 09, 052, arXiv:hep-th/0607205

  29. H. Boschi-Filho, N.R.F. Braga, F. Jugeau, M.A.C. Torres, Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD. Eur. Phys. J. C 73, 2540 (2013). arXiv:1208.2291

    Article  ADS  Google Scholar 

  30. E. Folco Capossoli, D. Li, and H. Boschi-Filho, Dynamical corrections to the anomalous holographic soft-wall model: the pomeron and the odderon, Eur. Phys. J. C 76, 320 ( 2016), arXiv:1604.01647

  31. U. Gursoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02, 032, arXiv:0707.1324

  32. U. Gursoy, E. Kiritsis, and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02, 019, arXiv:0707.1349

  33. U. Gursoy, E. Kiritsis, L. Mazzanti, author G. Michalogiorgakis, and author F. Nitti, Improved Holographic QCD, Lect. Notes Phys. 828, 79 ( 2011), arXiv:1006.5461

  34. O. Aharony, S. S. Gubser, J. M. Maldacena, author H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323, 183 ( 2000), arXiv:hep-th/9905111

  35. H. Boschi-Filho, N.R.F. Braga, H.L. Carrion, Glueball Regge trajectories from gauge/string duality and the Pomeron. Phys. Rev. D 73, 047901 (2006). arXiv:hep-th/0507063

    Article  ADS  Google Scholar 

  36. A. Vega, I. Schmidt, Scalar hadrons in AdS(5) x S**5. Phys. Rev. D 78, 017703 (2008). arXiv:0806.2267

    Article  ADS  Google Scholar 

  37. A. Vega and P. Cabrera, Family of dilatons and metrics for AdS/QCD models, Phys. Rev. D 93, 114026 ( 2016), arXiv:1601.05999

  38. T. Gherghetta, J.I. Kapusta, T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model. Phys. Rev. D 79, 076003 (2009). arXiv:0902.1998

    Article  ADS  Google Scholar 

  39. H. B. Meyer, Glueball regge trajectories, Other thesis ( 2004), arXiv:hep-lat/0508002

  40. A. Cherman, T.D. Cohen, E.S. Werbos, The Chiral condensate in holographic models of QCD. Phys. Rev. C 79, 045203 (2009). arXiv:0804.1096

    Article  ADS  Google Scholar 

  41. S. Narison and G. Veneziano, QCD Tests of \(G\) (1.6) = Glueball, Int. J. Mod. Phys. A 4, 2751 ( 1989)

Download references

Acknowledgements

We wish to acknowledge the financial support provided by FONDECYT (Chile) under Grants No. 1180753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vega.

Additional information

Communicated by A. Peshier.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, A., Rodriguez, A. Effects of beta function on mass and melting temperature for scalar glueballs in AdS/QCD models at finite temperature. Eur. Phys. J. A 58, 164 (2022). https://doi.org/10.1140/epja/s10050-022-00807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00807-6

Navigation