Skip to main content

Advertisement

Log in

Determination of \(\alpha \)-optical potential for reactions with p-nuclei from the study of (\(\alpha \),n) reactions in the astrophysically relevant energy region

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Optical potential parameters in nuclear model calculations are determined by fitting elastic scattering angular distribution data. Due to the dominance of Coulomb part, elastic scattering is performed at much higher energies. As a result, a change in potential is required for low-energy astrophysical reactions. A different approach is suggested using (\(\alpha \),n) reaction to determine the modified alpha optical potentials suitable for astrophysically relevant low energy regions. Reactions on p-nuclei in the mass region A \(\approx \) 92–168 have been chosen and a modified McFadden–Satchler \(\alpha \)-optical potential is obtained from fitting the (\(\alpha \),n) reaction data. The effect of level density and \(\gamma \)-ray strength function is also studied using this new potential by analyzing (\(\alpha ,\gamma \)) cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All experimental data are taken from National Nuclear Data Center(NNDC) (https://www.nndc.bnl.gov).]

References

  1. S.E. Woosley, W.M. Howard, ApJS 36, 285 (1978)

    Article  ADS  Google Scholar 

  2. M. Rayet et al., Astron. Asrophys. 227, 271 (1990)

    ADS  Google Scholar 

  3. M. Arnould, S. Goriely, Phys. Rep. 384, 1–84 (2003)

    Article  ADS  Google Scholar 

  4. T. Sauter, F. Käppeler, Phys. Rev. C 55, 3127 (1997)

    Article  ADS  Google Scholar 

  5. J. Mayer et al., Phys. Rev. C 93, 045809 (2016)

    Article  ADS  Google Scholar 

  6. V. Foteinou et al., Eur. Phys. J. A 55(5), 67 (2019)

    Article  ADS  Google Scholar 

  7. G. Gyürky et al., Nuclear Phys. A 922, 112 (2014)

    Article  ADS  Google Scholar 

  8. J. Bork et al., Phys. Rev. C 58, 524 (1998)

    Article  ADS  Google Scholar 

  9. B. Mei et al., Phys. Rev. C 92, 035803 (2015)

    Article  ADS  Google Scholar 

  10. N. Özkan et al., Nuclear Phys. A 710, 469 (2002)

    Article  ADS  Google Scholar 

  11. I. Dillmann et al., Phys. Rev. C 84, 015802 (2011)

    Article  ADS  Google Scholar 

  12. G. Gyürky et al., J. Phys. G 34, 817 (2007)

    Article  Google Scholar 

  13. G. Gyürky et al., Phys. Rev. C 68, 055803 (2003)

    Article  ADS  Google Scholar 

  14. F.R. Chloupek et al., Nuclear Phys. A 652, 391 (1999)

    Article  ADS  Google Scholar 

  15. Michael A. Famiano et al., Nuclear Phys. A 802, 26 (2008)

    Article  ADS  Google Scholar 

  16. M.R.T. Güray et al., Phys. Rev. C 80, 035804 (2009)

    Article  ADS  Google Scholar 

  17. L. Netterdon et al., Phys. Rev. C 90, 035806 (2014)

    Article  ADS  Google Scholar 

  18. W. Rapp et al., Phys. Rev. C 66, 015803 (2002)

    Article  ADS  Google Scholar 

  19. G. Gyürky et al., Phys. Rev. C 74, 025805 (2006)

    Article  ADS  Google Scholar 

  20. C. Yalçın et al., Phys. Rev. C 79, 0265801 (2009)

    Article  Google Scholar 

  21. P. Scholz et al., Phys. Lett. B 761, 247–252 (2016)

    Article  ADS  Google Scholar 

  22. R. Kelmar et al., Phys. Rev. C 101, 015801 (2020)

    Article  ADS  Google Scholar 

  23. N. Özkan et al., Phys. Rev. C 75, 025801 (2007)

    Article  ADS  Google Scholar 

  24. W. Rapp et al., Phys. Rev. C 78, 025804 (2008)

    Article  ADS  Google Scholar 

  25. Z. Halasz et al., Phys. Rev. C 94, 045801 (2016)

    Article  ADS  Google Scholar 

  26. T. Rauscher, Ap. J. Suppl. 201, 26 (2012)

    Article  ADS  Google Scholar 

  27. A.J. Koning, S. Hilaire, S. Goriely, TALYS 1.95 A nuclear reaction program (2019)

  28. V. Avrigeanu et al., Phys. Rev. C 90, 044612 (2014)

    Article  ADS  Google Scholar 

  29. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  30. D.M. Brink, Nuclear Phys. 4, 215 (1957)

    Article  ADS  Google Scholar 

  31. P. Axel, Phys. Rev. 126, 671 (1962)

    Article  ADS  Google Scholar 

  32. L. McFadden, G.R. Satchler, Nuclear Phys. 84, 177 (1966)

    Article  ADS  Google Scholar 

  33. P. Demetriou et al., Nuclear Phys. A 707, 253 (2002)

    Article  ADS  Google Scholar 

  34. D.E. Khulelidze et al., Soviet Phys. JETP 20, 259 (1965)

    Google Scholar 

  35. P. Demetriou et al., AIP Conf. Proc. 1090, 293 (2009)

    Article  ADS  Google Scholar 

  36. Z. Halasz et al., Phys. Rev. C 85, 025804 (2012)

    Article  ADS  Google Scholar 

  37. G.G. Kiss et al., Phys. Lett. B 735, 40–44 (2014)

    Article  ADS  Google Scholar 

  38. L. Netterdon et al., Nuclear Phys. A 916, 149 (2013)

  39. E. Somorjai et al., Astron. Astrophys. 333, 1112 (1998)

    ADS  Google Scholar 

  40. A. Sauerwein et al., Phys. Rev. C 84, 045808 (2011)

  41. T. Rauscher et al., Phys. Rev. C 86, 015804 (2012)

    Article  ADS  Google Scholar 

  42. J. Glorius et al., Phys. Rev. C 89, 065808 (2014)

    Article  ADS  Google Scholar 

  43. W. Dilg et al., Nuclear Phys. A 217, 269 (1973)

    Article  ADS  Google Scholar 

  44. T. Rauscher, Phys. Rev. C 81, 045807 (2010)

    Article  ADS  Google Scholar 

  45. Cyburt et al., ApJS 189, 240 (2010)

    Article  ADS  Google Scholar 

  46. P. Mohr et al., Phys. Rev. Lett. 124, 252701 (2020)

    Article  ADS  Google Scholar 

  47. C. Mahaux et al., Nuclear Phys. A 449(2), 354–394 (1986)

    Article  ADS  Google Scholar 

  48. N. Nhu Le et al., Phys. Rev. C 105, 014602 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Subinit Roy, Dr. Nikit Nitin Deshmukh and Tanmoy Bar for the fruitful discussions during this work. Authors also acknowledge Ritesh Ghosh and Suman Das for their help in numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmay Basu.

Additional information

Communicated by Arnau Rios Huguet

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, D., Basu, C. Determination of \(\alpha \)-optical potential for reactions with p-nuclei from the study of (\(\alpha \),n) reactions in the astrophysically relevant energy region. Eur. Phys. J. A 58, 150 (2022). https://doi.org/10.1140/epja/s10050-022-00798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00798-4

Navigation