Skip to main content
Log in

Cross-sections and isomeric ratios for the 136Xe(n,2n)135m,gXe reactions in the 14 MeV region with covariance analysis

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The neutron activation cross-section and ratios of the isomeric cross-section (σmg) in 136Xe(n,2n)135m,gXe reactions were measured according to the 93Nb(n,2n)92mNb reference reaction cross-section within the range for neutron spectrum energy 13–15 MeV. High purity and high-pressure natural xenon gas was used as the target sample. Neutrons were generated through the reaction of T(d,n)4He. A lead-shielded HPGe detector was used to measure the γ–ray spectra of the residue product. In the experiment, the true coincidence summing effect, sample counting geometry, the solid angle of the neutron flux, and self-attenuation of the characteristics γ-ray were corrected. A detailed covariance analysis has been performed by using the uncertainty propagation, while the measured cross-sections are being reported with their correlation matrix and uncertainties. Moreover, theoretical calculations were carried out on the TALYS-1.95 platform to obtain the reactions’ cross-sections of 136Xe(n,2n)135m,gXe compositions. Subsequently, the data from the measured cross-sections were compared to the theoretical values, the evaluation data, and the previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. CINDA-A, The index to literature and computer files on microscopic neutron data, International Atomic Energy Agency, 2000

  2. V. Mclane, C.L. Dunford, P.F. Rose, Neutron cross sections, vol. 2 (Academic, New York, 1988)

    Google Scholar 

  3. F. Najmabadi, Philos. Trans. R. Soc. A 357, 625 (1999)

    Article  ADS  Google Scholar 

  4. M. Akel, J. Fusion Energy 32, 523 (2013)

    Article  ADS  Google Scholar 

  5. A. Ratkiewicz et al., Rev. Sci. Instrum. 87, 11D825 (2016)

    Article  Google Scholar 

  6. Evaluated Nuclear Structure Data File (ENSDF), (Last updated 2021–07–07) http://www.nndc.bnl.gov/ensdf/

  7. A. Gandhi et al., J. Radioanal. Nucl. Chem. 322, 89 (2019)

    Article  Google Scholar 

  8. J. Luo et al., Chin. Phys. C 46, 044001 (2022)

    Article  Google Scholar 

  9. J.A. Frenje et al., Nucl. Fusion 53, 043014 (2013)

    Article  ADS  Google Scholar 

  10. P.A. Bradley et al., Phys. Rev. C 86, 014617 (2012)

    Article  ADS  Google Scholar 

  11. V. Rani et al., Eur. Phys. J. Plus 136, 22 (2021)

    Article  Google Scholar 

  12. R. Banik, et al., Proceedings of the DAE-BRNS Symposium on Nuclear Physics 61 (2016)

  13. W. Megha Bhike, Tornow. Phys. Rev. C 89, 031602(R) (2014)

    ADS  Google Scholar 

  14. A. Gando et al., Phys Rev. C 85, 045504 (2012)

    Article  ADS  Google Scholar 

  15. M. Auger et al., Phys. Rev. Lett. 109, 032505 (2012)

    Article  ADS  Google Scholar 

  16. Md. Mamunur Rashid, et al., J. Nucl. Sci. Techn., DOI: https://doi.org/10.1080/00223131.2015.1105164 (2015)

  17. R.A. Sigg, P.K. Kuroda, Nucl. Sci. Eng. 60, 235 (1976)

    Article  Google Scholar 

  18. E. Kondaiah, N. Ranakumar, R.W. Fink, Nucl. Phys. A 120, 337 (1968)

    Article  ADS  Google Scholar 

  19. C. Bhatia et al., Phys. Rev. C 87, 011601(R) (2013)

    Article  ADS  Google Scholar 

  20. B. Singh et al., Nucl. Data Sheets 109, 517 (2008)

    Article  ADS  Google Scholar 

  21. A. Koning, S. Hilaire, and M. Duijvestijn, “TALYS-1.95, A nuclear reaction program, ” NRG-1755 ZG Petten, The Netherlands, 2019, http://www.talys.eu

  22. ENDF/B-VIII.0 (USA, 2018), Evaluated Nuclear Data File (ENDF) Database Version of 2021–06–28 https://www.nds.iaea.org/exfor/endf.htm

  23. JEFF-3.3 (Europe, 2017), Evaluated Nuclear Data File (ENDF) Database Version of 2021–06–28 https://wwwnds.iaea.org/exfor/endf.htm

  24. JENDL-4.0 (Japan,2012), Evaluated Nuclear Data File (ENDF) Database Version of 2021–06–28 https://wwwnds.iaea.org/exfor/endf.htm

  25. ROSFOND (Russia, 2010), Evaluated Nuclear Data File (ENDF) Database Version of 2021–06–28 https://wwwnds.iaea.org/exfor/endf.htm

  26. CENDL-3 (China, 2020), Evaluated Nuclear Data File (ENDF) Database Version of 2021–06–28 https://wwwnds.iaea.org/exfor/endf.htm

  27. International Reactor Dosimetry and Fusion File, IRDFF-II, January, 2020 https://www-nds.iaea.org/IRDFF/

  28. J. Luo, L. Du, J. Zhao, Nucl. Instrum. Meth. B 298, 61 (2013)

    Article  ADS  Google Scholar 

  29. D.R. Nethaway, J. Inorg. Nucl. Chem. 40, 1285 (1978)

    Article  Google Scholar 

  30. V.E. Lewis, K.J. Zieba, Nucl. Instrum. Methods 174, 141 (1980)

    Article  ADS  Google Scholar 

  31. GammaVision®-32, Gamma-Ray Spectrum Analysis and MCA Emulator, Software User’s Manual, Software Version 5.3

  32. C.M. Baglin, Nucl. Data Sheets 113, 2187 (2012)

    Article  ADS  Google Scholar 

  33. J. Luo et al., J. Phys. G:Nucle. Part. Phys. 47, 075104 (2020)

    Article  ADS  Google Scholar 

  34. J. Luo, L. Jiang, Eur. Phys. A 56, 125 (2020)

    Article  ADS  Google Scholar 

  35. J. Luo, L. Jiang, L. He, Phys. Rev. C 98, 014619 (2018)

    Article  ADS  Google Scholar 

  36. F. Zhou et al., Chin. Phys. C 43, 094001 (2019)

    Article  ADS  Google Scholar 

  37. F. Zhou et al., Chin. Phys. C 45, 074101 (2021)

    Article  ADS  Google Scholar 

  38. G.J. McCallum, G.E. Coote, Nucl. Instr. Meth. 130, 189 (1975)

    Article  Google Scholar 

  39. F. Zhou, et al, HEP & NP, 31, 487 (In Chinese) (2007)

  40. J. H. Hubbell, S. M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest (2004) <http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html>

  41. J. Luo, L. Jiang, X. Wang, Eur. Phys. A 54, 67 (2018)

    Article  ADS  Google Scholar 

  42. J. Luo, F. Tuo, X. Kong, J. Radioanal. Nucl. Chem. 288, 143 (2011)

    Article  Google Scholar 

  43. N. Otuka et al., Rad. Phys. Chem. 140, 502 (2017)

    Article  ADS  Google Scholar 

  44. A. Gandhi et al., Phys. Rev. C 102, 014603 (2020)

    Article  ADS  Google Scholar 

  45. A. Gandhi et al., Chin. Phys. C 46(1), 014002 (2022)

    Article  ADS  Google Scholar 

  46. A. Gandhi et al., Eur. Phys. J. Plus 136, 819 (2021)

    Article  Google Scholar 

  47. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  48. A.J. Koning, J.P. Delaroche, Nuclear. Phys. A 713, 231 (2003)

    Google Scholar 

  49. P.A. Moldauer, Phys. Rev. C 14, 764 (1976)

    Article  ADS  Google Scholar 

  50. P.A. Moldauer, Nuclear. Phys. A 344, 185 (1980)

    Google Scholar 

  51. J. Luo, L. Jiang, L. He, Radiochim Acta 106, 709–717 (2018)

    Article  Google Scholar 

  52. S.M. Qaim, A. Mushtaq, M. Uhl, Phys. Rev. C 38, 645 (1988)

    Article  ADS  Google Scholar 

  53. S.M. Qaim et al., Phys. Rev. C 42, 363 (1990)

    Article  ADS  Google Scholar 

  54. C.D. Nesaraja, S. Sudár, S.M. Qaim, Phys. Rev. C 68, 024603 (2003)

    Article  ADS  Google Scholar 

  55. S.M. Qaim, Nucl. Phys. A 224, 319 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Intense Neutron Generator group at China Academy of Engineering Physics for performing the irradiations. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11875016, 12165006) and College student Science and Technology Innovation Project of Hexi University (Grant No. 110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Luo.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liang, J., Jiang, L. et al. Cross-sections and isomeric ratios for the 136Xe(n,2n)135m,gXe reactions in the 14 MeV region with covariance analysis. Eur. Phys. J. A 58, 142 (2022). https://doi.org/10.1140/epja/s10050-022-00797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00797-5

Navigation