Skip to main content
Log in

Measurement of the helicity dependence for single \(\pi ^{0}\) photoproduction from the deuteron

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The helicity-dependent single \(\pi ^{0}\) photoproduction cross section on the deuteron and the angular dependence of the double polarisation observable E for the quasi-free single \(\pi ^0\) production off the proton and the neutron have been measured, for the first time, from the threshold region up to the photon energy 1.4 GeV. The experiment was performed at the tagged photon facility of the MAMI accelerator and used a circularly polarised photon beam and longitudinally polarised deuteron target. The reaction products were detected using the large acceptance Crystal Ball/TAPS calorimeter, which covered 97% of the full solid angle. Comparing the cross section from the deuteron with the sum of free nucleon cross sections provides a quantitative estimate of the effects of the nuclear medium on pion production. In contrast, comparison of the E helicity asymmetry data from quasi-free protons off deuterium with data from a free proton target indicates that nuclear effects do not significantly affect this observable. As a consequence, it is deduced that the helicity asymmetry E on a free neutron can be reliably extracted from measurements on a deuteron in quasi-free kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data are available from the corresponding author and will be deposited on the HEPData repository.]

References

  1. I. Barker, A. Donnachie, Nucl. Phys. B 95, 347 (1975)

    Article  ADS  Google Scholar 

  2. G. Keaton, R. Workman, Phys. Rev. C 53, 1434 (1996)

    Article  ADS  Google Scholar 

  3. W.T. Chang, F. Tabakin, Phys. Rev. C 55, 2054 (1997)

    Article  ADS  Google Scholar 

  4. Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014)

    Article  ADS  Google Scholar 

  5. Y. Wunderlich et al., Phys. Rev. C 102, 034605 (2020)

    Article  ADS  Google Scholar 

  6. W. Briscoe et al., Eur. Phys. J. A 58, 23 (2022)

    Article  ADS  Google Scholar 

  7. V. Tarasov et al., Phys. Rev. C 84, 035203 (2016)

    Article  ADS  Google Scholar 

  8. V. Tarasov et al., Phys. Atom. Nucl. 79, 216 (2016)

    Article  ADS  Google Scholar 

  9. P. Mattione et al. (CLAS Collaboration), Phys. Rev. C 96, 035204 (2017)

  10. W.J. Briscoe et al. (A2 Collaboration at MAMI), Phys. Rev. C 100, 065205 (2019)

  11. C. Mullen et al. (A2 Collaboration at MAMI), Eur. Phys. J. A 57, 205 (2021)

  12. A. Kaeser et al. (A2 Collaboration at MAMI), Eur. Phys. J. A 52, 272 (2016)

  13. M. Oberle et al., Eur. Phys. J. A 50, 54 (2014)

    Article  ADS  Google Scholar 

  14. V. Sokhoyan et al. (A2 Collaboration at MAMI), Phys. Lett. B 802, 135243 (2020)

  15. M. Dieterle et al. (A2 Collaboration at MAMI), Phys. Lett. B 770, 523 (2017)

  16. E. Mornacchi, PhD thesis, University of Mainz (2021)

  17. H. Kaiser et al., Nucl. Instrum. Methods A 593, 159 (2008)

    Article  ADS  Google Scholar 

  18. L. Witthauer et al. (A2 Collaboration at MAMI), Eur. Phys. J. A 49, 154 (2013). arXiv:1312.1571

  19. D. Werthmüller et al. (A2 Collaboration at MAMI), Phys. Rev. C 90, 015205 (2014). arXiv:1407.6974

  20. L. Witthauer et al. (A2 Collaboration at MAMI), Phys. Rev. C 95, 055201 (2017)

  21. M. Dieterle et al. (A2 Collaboration at MAMI), Phys. Rev. C 97, 065205 (2018)

  22. J.C. McGeorge et al., Eur. Phys. J. A 37, 129 (2008)

    Article  ADS  Google Scholar 

  23. H. Olsen, L. Maximon, Phys. Rev. 114, 887 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Rohlof, H. Dutz, Nucl. Instrum. Methods A 436, 430 (1999)

    Article  ADS  Google Scholar 

  25. S. Goertz et al., Nucl. Instrum. Methods A 526, 43 (2004)

    Article  ADS  Google Scholar 

  26. C. Bradtke et al., Nucl. Instrum. Methods A 436, 430 (1999)

    Article  ADS  Google Scholar 

  27. L. Witthauer et al. (A2 Collaboration at MAMI), Phys. Rev. Lett. 117, 132502 (2016). arXiv:1702.01408

  28. A. Starostin et al., Phys. Rev. C 64, 055205 (2001)

    Article  ADS  Google Scholar 

  29. R. Novotny et al., IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  30. R.A. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)

    Article  ADS  Google Scholar 

  31. F. Cividini, PhD thesis, University of Mainz (2020)

  32. M. Dieterle, PhD thesis, University of Basel (2015)

  33. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  34. M. Dieterle et al. (A2 Collaboration at MAMI), Eur. Phys. J. A 51, 142 (2015)

  35. J. Ahrens et al., Phys. Lett. B 672, 328 (2009)

    Article  ADS  Google Scholar 

  36. A.V. Anisovich et al., Eur. Phys. J. A 52, 284 (2016)

    Article  ADS  Google Scholar 

  37. V. Kashevarov, L. Tiator, Private communication (2021)

  38. H. Arenhövel, A. Fix, Phys. Rev. C 72, 064004 (2005)

    Article  ADS  Google Scholar 

  39. A. Fix, H. Arenhövel, Phys. Rev. C 72, 064005 (2005)

    Article  ADS  Google Scholar 

  40. A. Anisovich et al., Eur. Phys. J. A 52, 284 (2016)

    Article  ADS  Google Scholar 

  41. Particle Data Group, P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 035205 (2020)

  42. M. Gottschall et al. (CBELSA/TAPS Collaboration), Phys. Rev. Lett. 100, 012003 (2014)

  43. M. Gottschall et al. (CBELSA/TAPS Collaboration), Eur. Phys. J. A 57, 40 (2021)

  44. Y. Wunderlich et al., Eur. Phys. J. A 53, 86 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the excellent support of the accelerator group of MAMI. This work has been supported by the U.K. STFC (ST/L00478X/1, ST/T002077/1, ST/L005824/1, 57071/1, 50727/1, ST/V001035/1) grants, the Deutsche Forschungsgemeinschaft (SFB443, SFB/TR16, and SFB1044), DFG-RFBR (Grant no. 09-02-91330), Schweizerischer Nationalfonds (Contracts No. 200020-175807, No. 200020-156983, No. 132799, No. 121781, No. 117601), the U.S. Department of Energy (Offices of Science and Nuclear Physics, Awards No. DE-SC0014323, DEFG02-99-ER41110, No. DE-FG02-88ER40415, No. DEFG02-01-ER41194) and National Science Foundation (Grants NSF OISE-1358175; PHY-1039130, PHY-1714833, No. IIA-1358175), INFN (Italy), and NSERC of Canada (Grant no. FRN-SAPPJ2015-00023).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. Pedroni.

Additional information

Communicated by K. Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cividini, F., Dieterle, M., Abt, S. et al. Measurement of the helicity dependence for single \(\pi ^{0}\) photoproduction from the deuteron. Eur. Phys. J. A 58, 113 (2022). https://doi.org/10.1140/epja/s10050-022-00760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00760-4

Navigation