Skip to main content

Cross section of the 232Th(n, f) reaction in the MeV neutron energy region

Abstract

Accurate cross section of the 232Th(n, f) reaction are demanded in the design of advanced nuclear systems and in the development of fission theory. However, the existing measurement data are relatively sparse comparing with those of the 238U(n, f) reaction, with big uncertainties and obvious discrepancies. Furthermore, analysis shows that systematic deviations exist between the results measured with mono-energetic neutron sources and white neutron sources, which is the main reason for the differences among different evaluation libraries. This work is dedicated to the clarification of this discrepancy. Based on mono-energetic d-d neutron sources and using back-to-back Th/238U samples, cross section of the 232Th(n, f) reaction were measured at 12 energies in the 4.2–11.5 MeV region. Elaborated measures were taken in the measurement procedure including the exchange of the forward and the backward direction of the samples, as well as in the data processing containing the correction of interference fission counts from low-energy neutrons and the detailed Monte Carlo simulations for the determination of detection efficiencies for fission events. In addition, theoretical analysis was also performed using TALYS-1.9 and UNF codes. The present results agree with existing measurement data using white neutron sources, showing that previous cross section of the 232Th(n, f) reaction measured using mono-energetic neutron sources are systematically overestimated on average. The present results are in accordance with the latest measurement data of Michalopoulou et al., which is helpful in the improvement of nuclear data evaluations of the 232Th(n, f) reaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

taken from the ENDF/B-VIII.0 library [10]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The final results of the experiment are presented in this paper. The origin data contains binary data of the signal waveforms from the detectors and it is too large to upload or deliver.]

References

  1. International Atomic Energy Agency, IAEA-TECHDOC-1450 Thorium Fuel Cycle - Potential Benefits and Challenges, Vienna (2005)s

  2. J. Meija et al., Pure Appl. Chem. 88, 265 (2016)

    Article  Google Scholar 

  3. M. Jiang et al., Bull. Chin. Acad. Sci. 27, 366 (2012)

    Google Scholar 

  4. International Atomic Energy Agency, IAEA-TECHDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity, Vienna (2003)

  5. C. J. Bailey et al., Measurements of sigma(f)(02)/sigma(f)(28) and the value of sigma(f)(02) as a function of neutron energy, New Mexico (1942)

  6. A.D. Carlson et al., Nucl. Data Sheets 148, 143 (2018)

    Article  ADS  Google Scholar 

  7. V.V. Zerkin et al., Nucl. Instrum. Methods Phys. Res. A 888, 31 (2018)

    Article  ADS  Google Scholar 

  8. Y. Ağuş et al., Radiochim. Acta 92, 63 (2004)

    Article  Google Scholar 

  9. V. Michalopoulou et al., Eur. Phys. J. A 57, 277 (2021)

    Article  ADS  Google Scholar 

  10. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  11. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  12. S. Zabrodskaya et al., Nucl. Constents 1, 3 (2007)

    Google Scholar 

  13. Z. Ge et al., EPJ Web of Conf. 239, 09001 (2020)

    Article  Google Scholar 

  14. M. Herman et al., Nucl. Data Sheets 108, 2655 (2007)

    Article  ADS  Google Scholar 

  15. A.J.M. Plompen et al., Eur. Phys. J. A 56, 181 (2020)

    Article  ADS  Google Scholar 

  16. Fusion Evaluated Nuclear Data Library - FENDL-3.2, https://www-nds.iaea.org/fendl/.

  17. A.J. Koning et al., Nucl. Data Sheets 155, 1 (2019)

    Article  ADS  Google Scholar 

  18. New Version of Neutron Evaluated Data Library Brond-3.1, https://vant.ippe.ru/en/brond-3-1.html.

  19. J. Blons et al., Nucl. Phys. A 414, 1 (1984)

    Article  ADS  Google Scholar 

  20. S. Bjørnholm et al., Rev. Mod. Phys. 52, 725 (1980)

    Article  ADS  Google Scholar 

  21. H. Bai et al., Nucl. Instrum. Methods Phys. Res. A 886, 109 (2018)

    Article  ADS  Google Scholar 

  22. H. Bai et al., Appl. Radiat. Isot. 152, 180 (2019)

    Article  Google Scholar 

  23. H. Jiang et al., Chin. Phys. C 44, 114102 (2020)

    Article  ADS  Google Scholar 

  24. H. Jiang et al., In Conf. 26th: International Seminar on Interaction of Neutrons with Nuclei, Xi'an, China, pp 198 (2018)

  25. SRIM-2013 http://www.srim.org/#SRIM.

  26. K.H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  27. A. S. Vorobyev et al., EPJ Web. Conf. 146 (2017).

  28. J. Zhang, Nucl. Sci. Eng. 142, 207 (2002)

    Article  Google Scholar 

  29. A.J. Koning et al., Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  30. Fission cross sections of some thorium, uranium, neptunium and plutonium isotopes relative to 235U, United States (1983)

  31. J.W. Behrens et al., Nucl. Sci. Eng. 81, 512 (1982)

    Article  Google Scholar 

  32. O. Shcherbakov et al., J. Nucl. Sci. Technol. 39, 230 (2002)

    Article  Google Scholar 

  33. P. W. Lisowski et al., Conf. Nucl. Data for Sci. Technol. Mito (1988)

  34. A.A. Goverdovskii et al., Soviet Atomic Energy 61, 958 (1986)

    Article  Google Scholar 

  35. D.L. Hill et al., Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  36. N. Bohr et al., Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  37. A. Gilbert et al., Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the operating crew of the 4.5 MV Van de Graaff accelerator at Peking University and the HI-13 tandem accelerator at China Institute of Atomic Energy. This work was supported by the National Natural Science Foundation of China (11775006 and 12075008) and by the Key Laboratory of Nuclear Data foundation (6142A08200103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Zhang.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gledenov, Y.M., Cui, Z., Liu, J. et al. Cross section of the 232Th(n, f) reaction in the MeV neutron energy region. Eur. Phys. J. A 58, 86 (2022). https://doi.org/10.1140/epja/s10050-022-00716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00716-8