Skip to main content
Log in

Phase-dependent cross sections of deuteron-triton fusion in dichromatic intense fields with high-frequency limit

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the influence of strong dichromatic laser fields (i.e., \(1\omega -2\omega \) and \(1\omega -3\omega \)) with high-frequency limit on the cross sections of deuteron-triton (DT) fusion in Kramers-Henneberger (KH) frame. We focus on the transitions of phase-dependent effects depending on a dimensionless quantity \(n_{\mathrm {d}}\), which equals the ratio of the quiver oscillation amplitude to the geometrical touching radius of the deuteron and triton as defined in our previous research. Theoretical calculations show that the angle-dependent as well as phase-dependent Coulomb barrier penetrabilities can be enhanced in dichromatic intense fields, and the corresponding angle-averaged penetrabilities and the fusion cross sections increase significantly compared with field-free case. Then, we investigate the effects of the two beams with different intensities. Moreover, we find that there are twice shifts of the peak values for the phase-dependent cross sections with the increase of \(n_{\mathrm {d}}\). The reason for the first shift is the angle-dependent effects for sub-barrier fusion, while the second shift is due to the accumulation of over-barrier fusion, these mechanisms are analyzed in detail in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and there are no data associated to it.]

References

  1. M. Gavrila (ed.), Atoms in Intense Laser Fields: Advances in Atomic, Molecular and Optical Physics Supplement 1 (Academic Press, Boston, 1992)

    Google Scholar 

  2. C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  3. J. Liu, Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields (Springer, Berlin, 2014)

    Book  Google Scholar 

  4. K. Mima, J. Fuchs, T. Taguchi et al., Matter Radiat. Extremes 3, 127 (2018)

    Article  Google Scholar 

  5. S.P.D. Mangles, C.D. Murphy, Z. Najmudin et al., Nature (London) 431, 535 (2004)

    Article  ADS  Google Scholar 

  6. C. G. R. Geddes, Cs. Toth, J. van Tilborg, et al., Nature (London) 431, 538 (2004)

  7. J. Faure, Y. Glinec, A. Pukhov et al., Nature (London) 431, 541 (2004)

    Article  ADS  Google Scholar 

  8. T. Li, X. Wang, J. Phys. G: Nucl. Part. Phys. 48, 095105 (2021)

  9. W. Wang, J. Zhou, B.Q. Liu, X. Wang, Phys. Rev. Lett. 127, 052501 (2021)

  10. F.F. Karpeshin, Phys. Part. Nucl. 37, 284 (2006)

    Article  Google Scholar 

  11. D. Bai, D.M. Deng, Z.Z. Ren, Nucl. Phys. A 976, 23 (2018)

    Article  ADS  Google Scholar 

  12. J.T. Qi, L.B. Fu, X. Wang, Phys. Rev. C 102, 064629 (2020)

  13. D.S. Delion, S.A. Ghinescu, Phys. Rev. Lett. 119, 202501 (2017)

  14. D. Bai, Z.Z. Ren, Commun. Theor. Phys. 70, 559 (2018)

    Article  ADS  Google Scholar 

  15. J.T. Qi, T. Li, R.H. Xu, L.B. Fu, X. Wang, Phys. Rev. C 99, 044610 (2019)

  16. A. P\(\acute{a}\)lffy, S. V. Popruzhenko, Phys. Rev. Lett. 124, 212505 (2020)

  17. S.A. Ghinescu, D.S. Delion, Phys. Rev. C 101, 044304 (2020)

  18. F. Queisser, R. Sch\(\ddot{u}\)tzhold, Phys. Rev. C 100, 041601(R) (2019)

  19. W.J. Lv, H. Duan, J. Liu, Phys. Rev. C 100, 064610 (2019)

  20. H.A. Kramers, Collected Scientific Papers (North Holland Publishing Company, Amsterdam, 1956)

  21. W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968)

  22. X. Wang, Phys. Rev. C 102, 011601(R) (2020)

  23. S. W. Liu, Classical trajectory dynamics of particle collision in the presence of intense laser fields. Ph.D. thesis, China Academy of Engineering Physics (2020)

  24. S.W. Liu, H. Duan, D.F. Ye, J. Liu, Phys. Rev. C 104, 044614 (2021)

  25. J.T. Qi, Nucl. Phys. A 1020, 122394 (2022)

  26. K.J. Schafer, K.C. Kulander, Phys. Rev. A 45, 8026 (1992)

    Article  ADS  Google Scholar 

  27. J. Chen, S.G. Chen, J. Liu, Chin. J. Comput. Phys. 15, 273 (1998)

    Google Scholar 

  28. J. Chen, J. Liu, S.G. Chen, Phys. Rev. A 61, 033402 (2000)

  29. T.W. Chen, J. Liu, S.G. Chen, Phys. Rev. A 59, 1451 (1999)

    Article  ADS  Google Scholar 

  30. T. W. Chen, J. Liu, S. G. Chen, Commun. Theor. Phys. (Beijing, China), 33, 33 (2000)

  31. T.W. Chen, J. Liu, S.G. Chen, Phys. Rev. A 62, 033402 (2000)

  32. T.W. Cheng, X.F. Li, P.M. Fu, S.G. Chen, Chin. Phys. Lett. 19, 1088 (2002)

    Article  ADS  Google Scholar 

  33. M. Razavy, Quantum Theory of Tunneling, 2nd edn. (World Scientific, Singapore, 2014)

    Book  Google Scholar 

  34. A.S. Landsman, M. Weger, J. Maurer et al., Optica 1, 343 (2014)

    Article  ADS  Google Scholar 

  35. N. Teeny, E. Yakaboylu, H. Bauke et al., Phys. Rev. Lett. 116, 063003 (2016)

  36. T. Zimmermann, S. Mishra, B.R. Doran et al., Phys. Rev. Lett. 116, 233603 (2016)

  37. N. Camus, E. Yakaboylu, L. Fechner et al., Phys. Rev. Lett. 119, 023201 (2017)

  38. P. Eckle, A.N. Pfeiffer, C. Cirelli et al., Science 322, 1525 (2008)

    Article  ADS  Google Scholar 

  39. L. Torlina, F. Morales, J. Kaushal et al., Nat. Phys. 11, 503 (2015)

    Article  Google Scholar 

  40. H. Ni, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 117, 023002 (2016)

  41. U. S. Sainadh, H. Xu, X. Wang, et al., Nature (2019)

  42. L.D. Landau, E.M. Lifshitz, Quantum Mechanics Non-relativistic Theory (Pergamon Press, London-Paris, 1958)

    MATH  Google Scholar 

  43. S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Clarendon Press, Oxford, 2004)

    Book  Google Scholar 

  44. G. Gamow, Eur. Phys. J. A 51, 204 (1928)

    Google Scholar 

  45. H.S. Bosch, G.M. Hale, Nucl. Fusion 32, 611 (1992)

    Article  ADS  Google Scholar 

  46. J. D. Lawson, Proc. Phys. Soc,. Lond. Sect. B 70, 6 (1957)

Download references

Acknowledgements

This work was supported by funding from NSAF No. U1930403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

Communicated by A. Diaz-Torres.

Appendix A

Appendix A

In this appendix, by comparison, we present how the average schemes are applied and what are the criteria for the averaging of atomic ionization, alpha decay and present work of DT fusion, respectively.

What we want to address is that DT fusion process is quite different to the alpha decay process as well as the atomic ionization: Even though all these models contain two essential processes of quantum tunneling and classical scattering processes, the time sequences of tunneling and classical scattering for the fusion are reversed comparing with other two models. This property makes the condition for averaged scheme of DT fusion also different.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Wu, B., Duan, H. et al. Phase-dependent cross sections of deuteron-triton fusion in dichromatic intense fields with high-frequency limit. Eur. Phys. J. A 58, 54 (2022). https://doi.org/10.1140/epja/s10050-022-00697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00697-8

Navigation