Skip to main content
Log in

Neutron induced reaction cross section of \(^{\mathbf {51}}\)V with covariance analysis

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The cross section of the \(^{51}\)V\(\left( {{{n, p}}} \right) ^{51}\)Ti reaction was measured at 7.87, 13.05 and 16.98 MeV neutron energies using the activation technique and offline \(\gamma \)-ray spectrometry. Vanadium targets were activated along with Al monitor foil to measure the cross section relative to the standard \(^{27}\)Al\(\left( {{{n,\alpha }}} \right) ^{24}\)Na reference reaction. The quasi-monoenergetic neutron beams were produced via the \(^{7}\)Li\(\left( {{{p, n}}} \right) \) reaction at the 14UD BARC-TIFR Pelletron Facility, Mumbai, India. Statistical nuclear reaction Talys (ver. 1.9) code was used for the theoretical estimations of the \(^{51}\)V\(\left( {{{n, p}}} \right) ^{51}\)Ti reaction cross section. Additionally, the effects of different input parameters were considered in present work to reproduction of the experimental data more accurately. The experimental data of the present measurements were discussed and compared with the previous measurements taken from the EXFOR compilation and latest evaluations of the ENDF/B-VIII.0, JENDL/AD-2017 and TENDL-2019 libraries. The covariance method was used to estimate the magnitudes of the uncertainties in the present cross section measurements. Furthermore, the different systematic formulae at 14–15 MeV energies were used to calculate the \(\left( {{{n, p}}}\right) \!, \left( {{{n, 2n}}} \right) \) and \(\left( {{{n, \alpha }}} \right) \) reactions cross section for structural material vanadium. The calculated cross sections from the formulae were discussed and compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The associated data in manuscript are taken from the EXFOR and ENDF data library. https://doi.org/10.1016/j.nds.2014.07.065, https://doi.org/10.1016/j.nds.2018.02.001, http://doi.org/10.11484/jaeaconf-2016-004, https://doi.org/10.1016/j.nds.2019.01.002, https://doi.org/10.1016/j.nds.2019.12.001.]

References

  1. R. Andreani, P. Batistoni, F. D. Marco, Neutronics problems in the design and construction of a magnetic fusion reactor. Proceedings of the International Conference on Nuclear Data for Science and Technology, Trieste, Italy, May 19-24, 1997, p. 118 (1997)

  2. H.A. Abderrahim, P. Dhondt, J. Nucl. Sci. Technol. 44(3), 491–498 (2007)

    Article  Google Scholar 

  3. S. J. Zinkle, Phys. Plasmas 12(5) (2005)

  4. M. Victoria, N. Baluc, P. Spatig, J. Nuclear Fusion, 41(5) (2001)

  5. P. Reimer, V. Avrigeanu, A.J.M. Plompen et al., Phys. Rev. C 65, 014604 (2001)

    Article  ADS  Google Scholar 

  6. D.L. Smith, B.A. Loomis, D.R. Diercks, J. Nucl. Mater. 135, 125–139 (1985)

    Article  ADS  Google Scholar 

  7. Experimental Nuclear Reaction Data IAEA-EXFOR Database, https://www-nds.iaea.org/exfor

  8. D.A. Brown, M. Herman, A. Trkov et al., EDNF/B-VIII.0. Nucl. Data Sheets 148, 1–142 (2018)

    Article  ADS  Google Scholar 

  9. K. Shibata, N. Iwamoto, S. Kunieda, F. Minato, O. Iwamoto “JENDL/AD-2017” “Activation Cross-section File for Decommissioning of LWRs” JAEA-Conf 2016-004, pp. 47–52

  10. A.J. Koning, D. Rochman, M. Fleming, TENDL-2019. Nucl. Data Sheets 155, 1–55 (2019)

    Article  ADS  Google Scholar 

  11. J.F. Ziegler, Nucl. Instru. Methods B 219–220, 1027 (2004)

    Article  ADS  Google Scholar 

  12. Wang Jimin, Huang Xiaolong, Nucl. Data Sheets 144, 1 (2017)

    Article  Google Scholar 

  13. R.B. Firestone, Nucl. Data Sheets 108, 2319 (2007)

    Article  ADS  Google Scholar 

  14. J.D. Anderson, C. Wong, V.A. Madsen, Phys. Rev. Lett. 24, 1074 (1970)

    Article  ADS  Google Scholar 

  15. C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes, C. Wong, Phys. Rev. C 14, 438 (1976)

    Article  ADS  Google Scholar 

  16. M.W. Mcnaughton, N.S.P. King, F.P. Brady et al., Nuclear Instrum. Methods 130, 555–557 (1975)

    Article  ADS  Google Scholar 

  17. R. Capote, K. I. Zolotarev, et al., IRDFF-1.05, Technical Report INDC (NDS)-0616, IAEA, Vienna (2012)

  18. D.W. Millsap, S. Landsberger et al., Appl. Radiat. Iso. 97, 21–433 (2015)

    Article  Google Scholar 

  19. Nowotny R., XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195 (1998)

  20. D. L. Smith, A.J.M. Plompen, V. Semkova, Corrections for low energy neutrons by spectral indexing, OECD, NEA, International Evaluation Co-operation, Volume-19, NEA/WPEC-19, ISBN 92-64-01070-X, 2005

  21. T. Vidmar, EFFTRAN-A Monto Carlo efficiency transfer code for gamma-ray spectrometry. Nucl. Instrum. and Methods in Phys. Res. A 550, 603–608 (2005)

  22. L. P. Geraldo and D. L. Smith, Nucl. Instrum. and Methods in Phys. Res. A 290:499–508 (1990)

  23. N. Otuka, B. Lalremruata, L.R.M. Punte et al., Radiat. Phys. Chem. 140, 502–510 (2017)

    Article  ADS  Google Scholar 

  24. A. J. Koning, S. Hilaire and Stephane Goriely, Talys (ver. 1.9), A Nuclear Reaction Program, NRG-1755ZGPetten, The Netherlands, CEA, Service de Physique et Techniques Nucleariques, B.P. 12, F-91680 Bruyeres-le-Chatel, France (2004)

  25. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  26. C. Kalbach, Phys. Rev. C 33, 818 (1986)

    Article  ADS  Google Scholar 

  27. A.J. Koning, J.P. Declaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  28. R. Capote, M. Herman, P. Oblozinsky et al., RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110, 3107–3214 (2009)

    Article  ADS  Google Scholar 

  29. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  30. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21(3), 255 (1975)

    Google Scholar 

  31. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

  32. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29(4), 450 (1979)

    Google Scholar 

  33. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Phys. Rev. C 47, 1504 (1993)

    Article  ADS  Google Scholar 

  34. S. Goriely, F. Tondeur, J.M. Pearson, Atom. Data Nucl. Data Tables 77, 311 (2001)

    Article  ADS  Google Scholar 

  35. S. Hilaire, M. Girod, S. Goriely and A.J. Koning, “Temperature dependent combinatorial level densities with the D1M Gogny force”, to be published (2013)

  36. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

  37. V.N. Levkovski, Zh. Eksp, Teor. Fiz. 45, 305 (1963)

    Google Scholar 

  38. S. Ait-Tahar, J. Phys. G: Nucl. Phys. 13, L121 (1987)

    Article  ADS  Google Scholar 

  39. R. Doczi, V. Semkova, A. D. Majdeddin, et al., IAEA-NDS Report No. Indc(HUN)-032, (1997)

  40. Y. Kasugai, Y. Ikeda, H. Yamamito, and K. Kawade, in Proceedings of the 1994 Symposium on Nuclear Data, November 1994, Tokai, Japan (JAERI, Ibaraki, 1995),

  41. J. Luo et al., Nucl. Instrum. Method Phys. Res. B 266, 4862 (2008)

    Article  ADS  Google Scholar 

  42. R. A. Forrest, Report AERE-R-12149. Atomic Energy Research Establishment, Harwell

  43. V. M. Bychkov, V. N. Manokhin, A. B. Pashchenko, et al., IAEA-NDS Report No. Indc(CCP) 146, (1980)

  44. F. I. Habbani and Khalda T. Osman, Appl. Radiat. Isot. 54, 283 (2001)

  45. C. Konno, Y. Ikeda, et al., JAERI Rep. No. 1329, Japan Atomic Energy Research Institute, Tokyo, Japan, (1993)

  46. E. Tel, B. Sarer, S. Okuducu, A. Aydın, G. Tanır, J. Phys. G: Nucl. Part. Phys. 29, 2169–2177 (2003)

    Article  ADS  Google Scholar 

  47. I. Kumabe, K.J. Fukuda, Nucl. Sci. Tech. 24, 83 (1987)

    Article  Google Scholar 

  48. S. Chatterjee, A. Chatterjee, Nucl. Phys. A 125, 593 (1969)

    Article  ADS  Google Scholar 

  49. Wen-deh Lu and R. W. Fink, Phys. Rev. C 4, 1173 (1971)

  50. AYu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Nucl. Instrum. Methods B 108, 233 (1996)

    Article  ADS  Google Scholar 

  51. W. Mannhart, D. Schmidt, Report No. PTB-N-53 (2007)

  52. Y. Ikeda, C. Konno, K. Oishi, T. Nakamura, H. Miyade, K. Kawade, et al., Report No. JAERI-1312 (1988)

  53. A. Fessler, A.J.M. Plompen, D.L. Smith et al., Nucl. Sci. Eng. 134, 171–200 (2000)

    Article  Google Scholar 

  54. D. L. Smith, J. W. Meadows And I. Kanno, Ann. nuel. Energy, Vol. 11, No. 12, pp. 623 627, (1984)

  55. M. Bormann, S. Cierjacks, E. Fretwurst, K.-J. Giesicke, H. Neuert, H. Pollehn, Z. Phys. 174, (1963)

  56. Masataka Furuta, Toshiaki Shimizu, Hiroaki Hayashi et al., Ann. Nucl. Energy 35, 1652–1662 (2008)

    Article  Google Scholar 

  57. Toshiaki Shimizua, Hitoshi Sakanea et al., Ann. Nucl. Energy 31, 975–990 (2004)

    Article  Google Scholar 

  58. T. Katoh, K. Kawade, H. Yamamoto, Report No. JAERI-M-89-083 (1989)

  59. Yoshitomo Uwamino, Hiroshi Sugita, Yuhri Kondo et al., Nucl. Sci. and Engi. 111, 391–403 (1992)

    Article  Google Scholar 

  60. Kaihong Fanga, Shiwei Xua, Changlin Lan, Appl. Radiat. Isot. 66, 1104–1107 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to S.C. Sharma (Scientific Officer) and BARC-TIFR Pelletron Accelerator Facility for their help in Li and Ta targets preparation and his experimental setup help. One of the authors (RKS) is thankful for financial assistance from the IUAC New Delhi for fellowship through a research project (UGC-IUAC/XIII.7/UFR-60321). A special thank is to C. Limberkar for providing the Vanadium material for target preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Singh.

Additional information

Communicated by Aurora Tumino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Singh, N.L., Chauhan, R.D. et al. Neutron induced reaction cross section of \(^{\mathbf {51}}\)V with covariance analysis. Eur. Phys. J. A 57, 337 (2021). https://doi.org/10.1140/epja/s10050-021-00638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00638-x

Navigation