Skip to main content
Log in

Virtual Compton scattering at low energies with a positron beam

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Virtual Compton scattering (VCS) process at low energies explores the electromagnetic structure of the proton in terms of generalized polarizabilities (GPs). In the one-photon exchange approximation, VCS can be accessed with exclusive photon production reactions with electron or positron beams. The extraction of the GPs from VCS with electron beam has seen substantial progress over the past two decades. Nonetheless, a consistent picture of the GPs from low to higher scales demands further investigations. Complementary measurements with positron beams offer an unique possibility, and we present an impact study of such experimental program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data are available upon request to the authors.]

References

  1. P.A.M. Guichon, G.Q. Liu, A.W. Thomas, Nucl. Phys. A591, 606 (1995). https://doi.org/10.1016/0375-9474(95)00217-O

    Article  ADS  Google Scholar 

  2. P.A.M. Guichon, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41, 125 (1998). https://doi.org/10.1016/S0146-6410(98)00056-8

    Article  ADS  Google Scholar 

  3. D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rept. 378, 99 (2003). https://doi.org/10.1016/S0370-1573(02)00636-1

    Article  ADS  Google Scholar 

  4. M. Gorchtein, C. Lorcé, B. Pasquini, M. Vanderhaeghen, Phys. Rev. Lett. 104, 112001 (2010). https://doi.org/10.1103/PhysRevLett.104.112001

    Article  ADS  Google Scholar 

  5. S.B. Gerasimov, Yad. Fiz. 2, 598 (1965)

    Google Scholar 

  6. S.D. Drell, A.C. Hearn, Phys. Rev. Lett. 16, 908 (1966). https://doi.org/10.1103/PhysRevLett.16.908

    Article  ADS  Google Scholar 

  7. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 91, 051503 (2015). https://doi.org/10.1103/PhysRevD.91.051503

    Article  ADS  Google Scholar 

  8. V. Lensky, V. Pascalutsa, M. Vanderhaeghen, C. Kao, Phys. Rev. D 95(7), 074001 (2017). https://doi.org/10.1103/PhysRevD.95.074001

    Article  ADS  Google Scholar 

  9. C.E. Carlson, M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011). https://doi.org/10.1103/PhysRevA.84.020102

    Article  ADS  Google Scholar 

  10. M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012). https://doi.org/10.1140/epja/i2012-12120-8

    Article  ADS  Google Scholar 

  11. A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez, R. Pohl, Ann. Phys. 331, 127 (2013). https://doi.org/10.1016/j.aop.2012.12.003

    Article  ADS  Google Scholar 

  12. F. Hagelstein, R. Miskimen, V. Pascalutsa, Prog. Part. Nucl. Phys. 88, 29 (2016). https://doi.org/10.1016/j.ppnp.2015.12.001

    Article  ADS  Google Scholar 

  13. J. Roche et al., Phys. Rev. Lett. 85, 708 (2000). https://doi.org/10.1103/PhysRevLett.85.708

    Article  ADS  Google Scholar 

  14. I.K. Bensafa et al., Eur. Phys. J. A 32, 69 (2007). https://doi.org/10.1140/epja/i2006-10277-3

    Article  ADS  Google Scholar 

  15. N.F. Sparveris et al., Phys. Rev. C 78, 018201 (2008). https://doi.org/10.1103/PhysRevC.78.018201

    Article  ADS  Google Scholar 

  16. L. Doria et al., Phys. Rev. C 92(5), 054307 (2015). https://doi.org/10.1103/PhysRevC.92.054307

    Article  ADS  Google Scholar 

  17. P. Janssens et al., Eur. Phys. J. A 37, 1 (2008). https://doi.org/10.1140/epja/i2008-10609-3

    Article  ADS  Google Scholar 

  18. G. Laveissiere et al., Phys. Rev. Lett. 93, 122001 (2004). https://doi.org/10.1103/PhysRevLett.93.122001

    Article  ADS  Google Scholar 

  19. H. Fonvieille et al., Phys. Rev. C 86, 015210 (2012). https://doi.org/10.1103/PhysRevC.86.015210

    Article  ADS  Google Scholar 

  20. P. Bourgeois et al., Phys. Rev. Lett. 97, 212001 (2006). https://doi.org/10.1103/PhysRevLett.97.212001

    Article  ADS  Google Scholar 

  21. P. Bourgeois et al., Phys. Rev. C 84, 035206 (2011). https://doi.org/10.1103/PhysRevC.84.035206

    Article  ADS  Google Scholar 

  22. H. Fonvieille, B. Pasquini, N. Sparveris, Prog. Part. Nucl. Phys. 113, 103754 (2020). https://doi.org/10.1016/j.ppnp.2020.103754

    Article  Google Scholar 

  23. D. Drechsel, G. Knochlein, A. Metz, S. Scherer, Phys. Rev. C 55, 424 (1997)

    Article  ADS  Google Scholar 

  24. D. Drechsel, G. Knochlein, A.Y. Korchin, A. Metz, S. Scherer, Phys. Rev. C 57, 941 (1998)

    Article  ADS  Google Scholar 

  25. B. Pasquini, M. Gorchtein, D. Drechsel, A. Metz, M. Vanderhaeghen, Eur. Phys. J. A 11, 185 (2001). https://doi.org/10.1007/s100500170084

    Article  ADS  Google Scholar 

  26. B. Pasquini, D. Drechsel, M. Gorchtein, A. Metz, M. Vanderhaeghen, Phys. Rev. C 62, 052201 (2000). https://doi.org/10.1103/PhysRevC.62.052201

    Article  ADS  Google Scholar 

  27. B. Pasquini, M. Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 68, 75 (2018). https://doi.org/10.1146/annurev-nucl-101917-020843

    Article  ADS  Google Scholar 

  28. D. Drechsel, S.S. Kamalov, G. Krein, B. Pasquini, L. Tiator, Nucl. Phys. A 660, 57 (1999)

    Article  ADS  Google Scholar 

  29. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007). https://doi.org/10.1140/epja/i2007-10490-6

    Article  ADS  Google Scholar 

  30. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  31. N.Sparveris, et al., Measurement of the generalized polarizabilities of the proton in virtual compton scattering (2016). JLab Proposal PR12-15-001

  32. https://www.jlab.org/Hall-C/upgrade/

  33. https://www.jlab.org/Hall-C/equipment/HMS.html

Download references

Acknowledgements

The work of M.V. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), in part through the Collaborative Research Center [The Low-Energy Frontier of the Standard Model, Projektnummer 204404729 - SFB 1044], and in part through the Cluster of Excellence [Precision Physics, Fundamental Interactions, and Structure of Matter] (PRISMA\(^+\) EXC 2118/1) within the German Excellence Strategy (Project ID 39083149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pasquini.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquini, B., Vanderhaeghen, M. Virtual Compton scattering at low energies with a positron beam. Eur. Phys. J. A 57, 316 (2021). https://doi.org/10.1140/epja/s10050-021-00630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00630-5

Navigation