Skip to main content
Log in

Nambu–Jona-Lasinio SU(3) model constrained by lattice QCD: thermomagnetic effects in the magnetization

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We use a three-flavor Nambu–Jona-Lasinio model to study the thermodynamics of strange quark matter under a strong magnetic field. The model Lagrangian features flavor SU(3) four-quark interactions and six-quark interactions that break the \(U_A(1)\) symmetry. We incorporate thermomagnetic effects in the four-quark coupling by fitting lattice results for the average of u and d quark condensates close to the pseudocritical temperature. We compute the pressure at the mean field level and obtain the magnetization of quark matter. We adopt the recently proposed vacuum magnetic regularization (VMR) scheme, in that divergent quark mass independent contributions are not subtracted, thereby avoiding unphysical results for the magnetization. We devote special attention to the renormalized magnetization, a projected quantity that allows for direct comparisons with lattice QCD simulations. Our results are in very good agreement with lattice data indicating a paramagnetic behavior for quark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no further data beyond the ones shown in the figures.]

References

  1. J. Rafelski, B. Muller, Phys. Rev. Lett. 36, 517 (1976). https://doi.org/10.1103/PhysRevLett.36.517

    Article  ADS  Google Scholar 

  2. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298

    Article  ADS  Google Scholar 

  3. V. Skokov, A. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  4. R.C. Duncan, C. Thompson, Astrophys. J. Lett. 392, L9 (1992). https://doi.org/10.1086/186413

    Article  Google Scholar 

  5. C. Kouveliotou, S. Dieters, T. Strohmayer, J. van Paradijs, G.J. Fishman, C.A. Meegan, K. Hurley, J. Kommers, I. Smith, D. Frail, T. Murakami, Nature 393, 235 (1998). https://doi.org/10.1038/30410

    Article  ADS  Google Scholar 

  6. T. Vachaspati, Phys. Lett. B 265, 258 (1991). https://doi.org/10.1016/0370-2693(91)90051-Q

    Article  ADS  Google Scholar 

  7. D. Grasso, H.R. Rubinstein, Phys. Rept. 348, 163 (2001). https://doi.org/10.1016/S0370-1573(00)00110-1

    Article  Google Scholar 

  8. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  9. D.T. Son, A.R. Zhitnitsky, Phys. Rev. D 70, 074018 (2004). https://doi.org/10.1103/PhysRevD.70.074018

    Article  ADS  Google Scholar 

  10. N. Yamamoto, Phys. Rev. Lett. 115(14), 141601 (2015). https://doi.org/10.1103/PhysRevLett.115.141601

    Article  ADS  Google Scholar 

  11. D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014). https://doi.org/10.1016/j.ppnp.2014.01.002

    Article  ADS  Google Scholar 

  12. X.G. Huang, Rept. Prog. Phys. 79(7), 076302 (2016). https://doi.org/10.1088/0034-4885/79/7/076302

    Article  Google Scholar 

  13. J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016). https://doi.org/10.1103/RevModPhys.88.025001

    Article  ADS  Google Scholar 

  14. V.A. Miransky, I.A. Shovkovy, Phys. Rept. 576, 1 (2015). https://doi.org/10.1016/j.physrep.2015.02.003

    Article  Google Scholar 

  15. A. Ayala, L.A. Hernández, M. Loewe, C. Villavicencio, ArXiv: 2104.05854

  16. G. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. Katz, S. Krieg, A. Schafer, K. Szabo, JHEP 02, 044 (2012). https://doi.org/10.1007/JHEP02(2012)044

    Article  ADS  Google Scholar 

  17. G. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. Katz, A. Schäfer, Phys. Rev. D 86, 071502 (2012). https://doi.org/10.1103/PhysRevD.86.071502

    Article  ADS  Google Scholar 

  18. G. Endrődi, M. Giordano, S.D. Katz, T. Kovács, F. Pittler, JHEP 07, 007 (2019). https://doi.org/10.1007/JHEP07(2019)007

    Article  ADS  Google Scholar 

  19. H.T. Ding, C. Schmidt, A. Tomiya, X.D. Wang, Phys. Rev. D 102(5), 054505 (2020). https://doi.org/10.1103/PhysRevD.102.054505

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Bandyopadhyay, R.L. Farias, Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00023-1

    Article  Google Scholar 

  21. J.O. Andersen, ArXiv: 2102.13165

  22. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  23. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961). https://doi.org/10.1103/PhysRev.124.246

    Article  ADS  Google Scholar 

  24. R. Farias, K. Gomes, G. Krein, M. Pinto, Phys. Rev. C 90(2), 025203 (2014). https://doi.org/10.1103/PhysRevC.90.025203

    Article  ADS  Google Scholar 

  25. R. Farias, V. Timóteo, S. Avancini, M. Pinto, G. Krein, Eur. Phys. J. A 53(5), 101 (2017). https://doi.org/10.1140/epja/i2017-12320-8

    Article  ADS  Google Scholar 

  26. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89(11), 116011 (2014). https://doi.org/10.1103/PhysRevD.89.116011

    Article  ADS  Google Scholar 

  27. M. Ferreira, P. Costa, D.P. Menezes, C. Providência, N. Scoccola, Phys. Rev. D 89(1), 016002 (2014). https://doi.org/10.1103/PhysRevD.89.016002. (Addendum: Phys.Rev.D 89, 019902 (2014))

    Article  ADS  Google Scholar 

  28. G. Endrődi, G. Markó, JHEP 08, 036 (2019). https://doi.org/10.1007/JHEP08(2019)036

    Article  ADS  Google Scholar 

  29. J. Moreira, P. Costa, T.E. Restrepo, Phys. Rev. D 102(1), 014032 (2020). https://doi.org/10.1103/PhysRevD.102.014032

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Moreira, P. Costa, T.E. Restrepo, Eur. Phys. J. A 57(4), 123 (2021). https://doi.org/10.1140/epja/s10050-021-00440-9

    Article  ADS  Google Scholar 

  31. A. Martínez, A. Raya, Nucl. Phys. B 934, 317 (2018). https://doi.org/10.1016/j.nuclphysb.2018.07.008

    Article  ADS  Google Scholar 

  32. G. Bali, F. Bruckmann, G. Endrődi, F. Gruber, A. Schäefer, JHEP 04, 130 (2013). https://doi.org/10.1007/JHEP04(2013)130

    Article  ADS  Google Scholar 

  33. G. Endrődi, JHEP 04, 023 (2013). https://doi.org/10.1007/JHEP04(2013)023

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, Phys. Rev. Lett. 111, 182001 (2013). https://doi.org/10.1103/PhysRevLett.111.182001

    Article  ADS  Google Scholar 

  35. C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, Phys. Rev. D 89(5), 054506 (2014). https://doi.org/10.1103/PhysRevD.89.054506

    Article  ADS  Google Scholar 

  36. P. Adhikari, J.O. Andersen, ArXiv: 2102.01080

  37. A.N. Tawfik, A.M. Diab, M.T. Hussein, J. Exp. Theor. Phys. 126(5), 620 (2018). https://doi.org/10.1134/S1063776118050138

    Article  ADS  Google Scholar 

  38. C.P. Hofmann, ArXiv: 2012.06461

  39. C.P. Hofmann, ArXiv: 2103.04937

  40. G.S. Bali, F. Bruckmann, G. Endrodi, A. Schafer, Phys. Rev. Lett. 112, 042301 (2014). https://doi.org/10.1103/PhysRevLett.112.042301

  41. D. Ebert, K. Klimenko, Nucl. Phys. A 728, 203 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.021

    Article  ADS  Google Scholar 

  42. D. Ebert, K. Klimenko, M. Vdovichenko, A. Vshivtsev, Phys. Rev. D 61, 025005 (2000). https://doi.org/10.1103/PhysRevD.61.025005

    Article  ADS  Google Scholar 

  43. S.S. Avancini, R.L. Farias, N.N. Scoccola, W.R. Tavares, Phys. Rev. D 99(11), 116002 (2019). https://doi.org/10.1103/PhysRevD.99.116002

    Article  ADS  MathSciNet  Google Scholar 

  44. D.C. Duarte, P. Allen, R. Farias, P.H.A. Manso, R.O. Ramos, N. Scoccola, Phys. Rev. D 93(2), 025017 (2016). https://doi.org/10.1103/PhysRevD.93.025017

    Article  ADS  Google Scholar 

  45. P.G. Allen, A.G. Grunfeld, N.N. Scoccola, Phys. Rev. D 92(7), 074041 (2015). https://doi.org/10.1103/PhysRevD.92.074041

    Article  ADS  Google Scholar 

  46. D. Menezes, M. Benghi Pinto, S. Avancini, A. Perez Martinez, C. Providência, Phys. Rev. C 79, 035807 (2009). https://doi.org/10.1103/PhysRevC.79.035807

    Article  ADS  Google Scholar 

  47. D. Menezes, M. Benghi Pinto, S. Avancini, C. Providência, Phys. Rev. C 80, 065805 (2009). https://doi.org/10.1103/PhysRevC.80.065805

    Article  ADS  Google Scholar 

  48. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providência, Phys. Rev. D 85, 091901 (2012). https://doi.org/10.1103/PhysRevD.85.091901

    Article  ADS  Google Scholar 

  49. S.S. Avancini, R.L.S. Farias, M. Benghi Pinto, W.R. Tavares, V.S. Timóteo, Phys. Lett. B 767, 247 (2017). https://doi.org/10.1016/j.physletb.2017.02.002

    Article  ADS  Google Scholar 

  50. S.S. Avancini, V. Dexheimer, R.L.S. Farias, V.S. Timóteo, Phys. Rev. C 97(3), 035207 (2018). https://doi.org/10.1103/PhysRevC.97.035207

    Article  ADS  Google Scholar 

  51. S.S. Avancini, R.L. Farias, W.R. Tavares, Phys. Rev. D 99(5), 056009 (2019). https://doi.org/10.1103/PhysRevD.99.056009

    Article  ADS  Google Scholar 

  52. M. Coppola, P. Allen, A. Grunfeld, N. Scoccola, Phys. Rev. D 96(5), 056013 (2017). https://doi.org/10.1103/PhysRevD.96.056013

    Article  ADS  Google Scholar 

  53. A. Bandyopadhyay, R.L.S. Farias, B.S. Lopes, R.O. Ramos, Phys. Rev. D 100(7), 076021 (2019). https://doi.org/10.1103/PhysRevD.100.076021

    Article  ADS  Google Scholar 

  54. S.S. Avancini, R.L.S. Farias, M.B. Pinto, T.E. Restrepo, W.R. Tavares, Phys. Rev. D 103(5), 056009 (2021). https://doi.org/10.1103/PhysRevD.103.056009

    Article  ADS  Google Scholar 

  55. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991). https://doi.org/10.1016/0146-6410(91)90005-9

    Article  ADS  Google Scholar 

  56. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992). https://doi.org/10.1103/RevModPhys.64.649

    Article  ADS  MathSciNet  Google Scholar 

  57. T. Hatsuda, T. Kunihiro, Phys. Rept. 247, 221 (1994). https://doi.org/10.1016/0370-1573(94)90022-1

    Article  Google Scholar 

  58. T. Kunihiro, T. Hatsuda, Phys. Lett. B 206, 385 (1988). https://doi.org/10.1016/0370-2693(88)91596-1. (Erratum: Phys.Lett.B 210, 278–278 (1988))

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants No. 309598/2020-6 (R.L.S.F.), No. 304518/2019-0 (S.S.A.) No. 303846/2017-8 (M.B.P), and No. 309262/2019-4 (G.K.), No. 306615/2018-5 (V.S.T.); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - (CAPES) Finance Code 001 ( W.R.T); Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Grants Nos. 19/2551- 0000690-0 and 19/2551-0001948-3 (R.L.S.F.); Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant No. 2018/25225-9 (G.K.), No. 2019/10889-1 (V.S.T.); Fundo de Apoio ao Ensino, Pesquisa e à Extensão (FAEPEX), Grant No. 3258/19 (V.S.T.). The work is also part of the project Instituto Nacional de Ciência e Tecnologia - Física Nuclear e Aplicações (INCT - FNA), Grant No. 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney S. Avancini.

Additional information

Communicated by Carsten Urbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, W.R., Farias, R.L.S., Avancini, S.S. et al. Nambu–Jona-Lasinio SU(3) model constrained by lattice QCD: thermomagnetic effects in the magnetization. Eur. Phys. J. A 57, 278 (2021). https://doi.org/10.1140/epja/s10050-021-00587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00587-5

Navigation