Skip to main content
Log in

Study of \(\Lambda _c\) \(\Lambda _c\) dibaryon and \(\Lambda _c\) \({\bar{\Lambda }}_c\) baryonium states via QCD sum rules

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this article, we construct the six-quark currents with the \(J^P=0^+\), \(0^-\), \(1^+\) and \(1^-\) to study the \(\Lambda _c\) \(\Lambda _c\) dibaryon and \(\Lambda _c\) \({\bar{\Lambda }}_c\) baryonium states via QCD sum rules. We consider the vacuum condensates up to dimension 16 and truncation of the order \({\mathcal {O}}(\alpha _s^k )\) with \(k\le 3\). The predicted masses are \(5.11_{-0.12}^{+0.15}\) GeV, \(4.66_{-0.06}^{+0.10}\) GeV, \(4.99_{-0.09}^{+0.10}\) GeV \(4.68^{+0.08}_{-0.08}\) GeV for the \(J^P=0^+\), \(0^-\), \(1^+\) and \(1^-\) states, respectively, which can be confronted to the experimental data in the future considering the high integrated luminosity at the center-of-mass energy about \(4.8\,\mathrm {GeV}\) at the BESIII. We find the terms with \(\frac{3}{2}< k \le 3\) do play a tiny role, and we can ignore these terms safely in the QCD sum rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. S.K. Choi et al., Belle Collaboration. Phys. Rev. Lett. 91, 262001 (2003)

  2. B. Aubert et al., BABAR Collaboration. Phys. Rev. D 77, 111101 (2008)

  3. F.K. Guo, C. Hanhart, U.G. Meissner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    Article  ADS  Google Scholar 

  4. C.F. Qiao, Phys. Lett. B 639, 263 (2006)

    Article  ADS  Google Scholar 

  5. C.F. Qiao, J. Phys. G 35, 075008 (2008)

    Article  ADS  Google Scholar 

  6. Z.G. Wang, S.L. Wan, J. Phys. G 34, 505–511 (2007)

    Article  ADS  Google Scholar 

  7. M. Ablikim, et al., (2021) arXiv:2011.07855v1 [hep-ph]

  8. N. Kodama, M. Oka, T. Hatsuda, Nucl. Phys. A 580, 445 (1994)

    Article  ADS  Google Scholar 

  9. H.X. Chen, E.L. Cui, W. Chen, T.G. Steele, Sh.L. Zhu, Phys. Rev. C 91, 025204 (2015)

    Article  ADS  Google Scholar 

  10. Z.G. Wang, Eur. Phys. J. C 77, 642 (2017)

    Article  ADS  Google Scholar 

  11. B.D. Wan, L. Tang, C.F. Qiao, Eur. Phys. J. C 80, 121 (2020)

    Article  ADS  Google Scholar 

  12. X.K. Dong, F.K. Guo, B.S. Zhou, (2021) arXiv:2101.01021 [hep-ph]

  13. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96, 034026 (2017)

    Article  ADS  Google Scholar 

  14. W. Chen, S.L. Zhu, Phys. Rev. D 81, 105018 (2010)

    Article  ADS  Google Scholar 

  15. W. Chen, S.L. Zhu, Phys. Rev. D 83, 034010 (2011)

    Article  ADS  Google Scholar 

  16. U. Ozdem, K. Azizi, Phys. Rev. D 97, 014010 (2018)

    Article  ADS  Google Scholar 

  17. S.H. Lee, M. Nielsen, U. Wiedner, J. Korean Phys. Soc. 55, 424 (2009)

    Article  ADS  Google Scholar 

  18. J.R. Zhang, M.Q. Huang, Commun. Theor. Phys. 54, 1075 (2010)

    Article  ADS  Google Scholar 

  19. J.R. Zhang, M. Zhong, M.Q. Huang, Phys. Lett. B 704, 312 (2011)

    Article  ADS  Google Scholar 

  20. R.D. Matheus, F.S. Navarra, M. Nielsen, C.M. Zanetti, Phys. Rev. D 80, 056002 (2009)

    Article  ADS  Google Scholar 

  21. S.H. Lee, A. Mihara, F.S. Navarra, M. Nielsen, Phys. Lett. B 661, 28 (2008)

    Article  ADS  Google Scholar 

  22. R.M. Albuquerque, M. Nielsen, Nucl. Phys. A 815, 53 (2011) [Erratum. Nucl. Phys. A 857(2011), 48 (2009)]

  23. Z.Y. Di, Z.G. Wang, G.L. Yu, Commun. Theor. Phys. 71, 685 (2019)

    Article  ADS  Google Scholar 

  24. H.J. Lee, K.S. Kim, H. Kim, Phys. Rev. D 100, 034021 (2019)

    Article  ADS  Google Scholar 

  25. Y.J. Shi, Y. Xing, Z.X. Zhao, Eur. Phys. J. C 81, 156 (2021)

    Article  ADS  Google Scholar 

  26. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  27. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  28. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127, 1 (1985)

    Article  ADS  Google Scholar 

  29. Z.G. Wang, T. Huang, Phys. Rev. D 89, 054019 (2014)

    Article  ADS  Google Scholar 

  30. Z.G. Wang, T. Huang, Eur. Phys. J. C 74, 2891 (2014)

    Article  ADS  Google Scholar 

  31. Z.G. Wang, Eur. Phys. J. C 76, 387 (2016)

    Article  ADS  Google Scholar 

  32. Z.G. Wang, Eur. Phys. J. C 76, 70 (2016)

    Article  ADS  Google Scholar 

  33. Z.G. Wang, T. huang, Eur. Phys. J. 76, 43 (2016)

    Article  ADS  Google Scholar 

  34. P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner (Springer, Berlin, Heidelberg, 1984)

    Book  Google Scholar 

  35. X.W. Wang, Z.G. Wang, G.L. Yu, (2021) arXiv:2107.04751 [hep-ph]

  36. P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  37. S. Narison, R. Tarrach, Phys. Lett. B 125, 217 (1983)

    Article  ADS  Google Scholar 

  38. P. Colangelo, A. Khodjamirian, (2021), arXiv:hep-ph/0010175

  39. Z.G. Wang, Chin. Phys. C 41, 083103 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Youth Foundation of NCEPU, Grant number 93209703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Wu Wang.

Additional information

Communicated by Xin-Nian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Wang, ZG. & Yu, Gl. Study of \(\Lambda _c\) \(\Lambda _c\) dibaryon and \(\Lambda _c\) \({\bar{\Lambda }}_c\) baryonium states via QCD sum rules. Eur. Phys. J. A 57, 275 (2021). https://doi.org/10.1140/epja/s10050-021-00576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00576-8

Navigation