Skip to main content
Log in

Binding energy shifts from heavy-ion experiments in a nuclear statistical equilibrium model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Chemical constants extracted from \(^{124}\)Xe+ \(^{124}\)Sn collisions at 32 AMeV are compared to the predictions of an extended nuclear statistical equilibrium model including mean-field interactions and in-medium binding energy shifts for the light (\(Z\le 2\)) clusters. The ion species and density dependence of the in-medium modification is directly extracted from the experimental data. We show that the shift increases with the mass of the cluster and the density of the medium, and we provide a simple linear fit for future use in astrophysical simulations in the framework of the CompOSE data base. The resulting mass fractions are computed in representative thermodynamic conditions relevant for supernova and neutron star mergers. A comparison to the results of a similar analysis of the same data performed in the framework of a relativistic mean-field model shows a good agreement at low density, but significant discrepancies close to the Mott dissolution of clusters in the dense medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: All data included in this manuscript are available upon request by contacting the authors.]

Notes

  1. We use \(k_B=1\) all over the paper.

  2. It will be very important to have data on more asymmetric systems to confirm the similar behavior of \(^3\)H and \(^3\)He, since the assumption of isospin independence might have important consequences in the extrapolation to the very neutron-rich matter involved in astrophysical sites where those clusters are produced.

References

  1. A. Arcones, G. Martínez-Pinedo, E. O’Connor, A. Schwenk, H.-T. Janka, C.J. Horowitz, K. Langanke, Phys. Rev. C 78, 015806 (2008)

  2. S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Nucl. Phys. A 957, 188 (2017)

    Article  ADS  Google Scholar 

  3. A. Raduta. Ad, F. Gulminelli, Nucl. Phys. A 983, 252 (2019)

    Article  ADS  Google Scholar 

  4. D.G. Ravenhall et al., Nucl. Phys. A 407, 571 (1983)

    Article  ADS  Google Scholar 

  5. J.M. Lattimer, F. Douglas Swesty, Nucl. Phys. A 535, 331 (1991)

    Article  ADS  Google Scholar 

  6. G. Röpke, Phys. Rev. C 79, 014002 (2009)

    Article  ADS  Google Scholar 

  7. G. Röpke, Phys. Rev. C 92, 054001 (2015)

    Article  ADS  Google Scholar 

  8. G. Röpke, Phys. Rev. C 101, 064310 (2021)

    Article  ADS  Google Scholar 

  9. M. Hempel, K. Hagel, J. Natowitz, G. Röpke, S. Typel, Phys. Rev. C 91, 045805 (2015)

    Article  ADS  Google Scholar 

  10. H. Pais, F. Gulminelli, C. Providência, G. Röpke, Phys. Rev. C 97, 045805 (2018)

    Article  ADS  Google Scholar 

  11. L. Qin, K. Hagel, R. Wada, J.B. Natowitz et al., Phys. Rev. Lett. 108, 172701 (2012)

    Article  ADS  Google Scholar 

  12. H. Pais et al., Phys. Rev. Lett. 125, 012701 (2020)

    Article  ADS  Google Scholar 

  13. T. Custódio, A. Falcão, H. Pais, C. Providência, F. Gulminelli, G. Röpke, Eur. Phys. J. A 56, 295 (2020)

    Article  ADS  Google Scholar 

  14. S. Mallik, F. Gulminelli, Phys. Rev. C 103, 015803 (2021)

    Article  ADS  Google Scholar 

  15. F. Gulminelli, A. Raduta, Phys. Rev. C 92, 055803 (2015)

    Article  ADS  Google Scholar 

  16. D.L. Tubbs, S.E. Koonin, Astrophys. J. 232, L59 (1979)

    Article  ADS  Google Scholar 

  17. J. Margueron, R. Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018)

    Article  ADS  Google Scholar 

  18. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1997)

    Article  ADS  Google Scholar 

  19. T. Carreau, F. Gulminelli, J. Margueron, Eur. Phys. J. A 55, 188 (2019)

    Article  ADS  Google Scholar 

  20. F. Gulminelli, A.R. Raduta, Phys. Rev. C 92, 055803 (2015)

    Article  ADS  Google Scholar 

  21. R. Bougault et al., J. Phys. G 47, 025103 (2020)

    Article  ADS  Google Scholar 

  22. https://compose.obspm.fr/

  23. H. Pais et al., J. Phys. G 47, 105204 (2020)

    Article  ADS  Google Scholar 

  24. G.A. Lalazissis, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  25. H. Pais et al., Phys. Rev. C 99, 055806 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Avancini et al., Phys. Rev. C 95, 045804 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Bougault and D. Gruyer of LPC Caen and C. Providência of University of Coimbra for valuable discussions. This work was partly supported by the FCT (Portugal) Projects No. UID/FIS/04564/2020, and POCI-01-0145-FEDER- 029912, by PHAROS COST Action CA16214, and by “IFCPAR/CEFIPRA” Project No. 5804-3. H.P. acknowledges the grant CEECIND/03092/2017 (FCT, Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mallik.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallik, S., Pais, H. & Gulminelli, F. Binding energy shifts from heavy-ion experiments in a nuclear statistical equilibrium model. Eur. Phys. J. A 57, 262 (2021). https://doi.org/10.1140/epja/s10050-021-00573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00573-x

Navigation