Skip to main content
Log in

Measurement of cross sections of Zr-isotopes with the fast neutrons based on the \(^9\)Be(p, n) reaction

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The cross sections of the \(^{\mathrm {96}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {95}}\hbox {Zr}\), \(^{\mathrm {90}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {89}}\hbox {Zr}\), and \(^{\mathrm {90}}\hbox {Zr}\)(n, 3n)\(^{\mathrm {88}}\hbox {Zr}\) reactions with the average neutron energies of 13.8–31.33 MeV were measured by using the activation and an off-line \(\upgamma \)-ray spectrometric technique. The cross sections for the \(^{\mathrm {96}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {95}}\hbox {Zr}\) reaction at the average neutron energies of 18.91 MeV and 25.81 MeV, for the \(^{\mathrm {90}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {89}}\hbox {Zr}\) reaction at 28.74 MeV as well as for the \(^{\mathrm {90}}\hbox {Zr}(\mathrm{n},\ 3\mathrm{n})^{\mathrm {88}}\hbox {Zr}\) reaction in the average energies of 27.37 MeV and 31.33 MeV are the first time measurements. The fast neutrons were generated by using the \(^{\mathrm {9}}\)Be(p, n) reaction with the proton energies of 25-, 35- and 45-MeV from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron spectra were simulated by using the computer code MCNPX 2.6., whereas the experimental neutron fluxes were monitored based on the \(^{\mathrm {27}}\hbox {Al}(\hbox {n},\ \upalpha )^{\mathrm {24}}\hbox {Na}\) reaction. The cross sections for the \(^{\mathrm {96}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {95}}\hbox {Zr}\), \(^{\mathrm {90}}\hbox {Zr}(\hbox {n},\ 2\hbox {n})^{\mathrm {89}}\hbox {Zr}\), and \(^{\mathrm {90}}\hbox {Zr}\)(n, 3n)\(^{\mathrm {88}}\hbox {Zr}\) reactions induced by mono-energetic neutrons were also calculated by using the TALYS 1.9 code. The present results are compared with the literature data and the theoretical values, and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: All data used in this paper are deposited in the EXFOR data library and TENDL–2019 data library, and the data produced during this study will be deposited in the EXFOR data library.]

References

  1. DOE Fundamentals handbook material science, DOE-HDBK-1017/2-93 January, U.S. Department of Energy FSC-6910 Washington, D.C. 20585, Volume 2 of 2 (1993)

  2. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  3. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)

    Article  Google Scholar 

  4. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. Article ID 97486 1–11 (2007)

  5. F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubio, C. Rubia, CERN/AT/93-49(ET), (1993)

  6. C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Man-drilion, J.P. Revol, Ch. Roche, CERN/LHC/97-01(EET), (1997)

  7. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  8. S. Ganesan, Pramana 68, 257 (2007)

    Article  ADS  Google Scholar 

  9. R.H. Zee, M.W. Guinan, J.S. Huang, J. Nucl. Mater. 141–143, 874 (1986)

    Article  ADS  Google Scholar 

  10. N. Stojilovic, E.T. Bender, R.D. Ramsier, Progress Surf. Sci. 78, 101 (2005)

    Article  ADS  Google Scholar 

  11. IAEA Final report of a coordinated research project 1998-2002, Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors, IAEA TECDOC-1410 (2004)

  12. G.R. Pansare, P.M. Dighe, V.N. Bhoraskar, Rad. Phys. Chem. 40, 213 (1992)

    ADS  Google Scholar 

  13. F.M.D. Attar, R. Mandal, S.D. Dhole, A. Saxena, S. Ashokkumar, S. Kailas. Ganesan, V.N. Bhoraskar, Nucl. Phys. A 802, 1 (2008)

    Article  ADS  Google Scholar 

  14. E.T. Anderson, S.A. Wilson, J.H. Schemel, U. S. Patent 4(908), 071 (1990)

    Google Scholar 

  15. K.L. Murty, Appl. Mech. Rev. 46(5), 194 (1993)

    Article  ADS  Google Scholar 

  16. K.N. Choo, Y.H. Kang, S.I. Pyun, V.F. Urbanic, J. Nucl. Mater. 209, 226 (1994)

    Article  ADS  Google Scholar 

  17. G.P. Sabol, G.R. Klip, M.G. Balfour, E. Roberts, in: Proceedings of Eighth International Symposium on Zirconium in the Nuclear Industry, STP 1023, Philadelphia, p 227 (1989)

  18. G.P. Sabol, G. Schoenberger, M.G. Balfour, in: IAEA Tech. Comm. Meeting on Materials for Advanced Water-Cooled Reactors, Plzen, Czech and Slovak Federal Republic, IAEA CONF-9105343-3, p 50 (1991)

  19. P.S. Chowdhury, P. Mukherjee, N. Gayathri, M. Bhattacharya, A. Chatterjee, P. Barat, P.M.G. Nambissan, Bull. Mater. Sci. 34, 507 (2011)

    Article  Google Scholar 

  20. A. Hussain, D. Al-Othmany, J. Natl. Sci. Res. 3, 98 (2013)

    Google Scholar 

  21. P. Patnaik, Handbook of Inorganic Chemicals (McGraw –Hill, New York, 2003)

    Google Scholar 

  22. L.L. Shreir, R.A. Jarman, G.T. Burstein, Corrosion, Third Edition, vol. 1 (Butterworth-Heinemann, Oxford, 1994)

    Google Scholar 

  23. P. Rudling, A. Strasser, F. Garzarolli, IZNA7 Special topic report welding of zirconium alloys (2007)

  24. Experimental Nuclear Reaction Data (EXFOR), Database Version of 2021-08-24. http://www-nds.iaea.org/exfor

  25. W.D. Lu, N. Ranakumar, R.W. Fink, Phys. Rev. C 1, 350 (1970)

    Article  ADS  Google Scholar 

  26. J. Araminowicz, J. Dresler, Progress Report No. INR-1464, 14 (1973)

  27. S.M. Qaim, G. Stoecklin, Report No. EUR-5182E, 939 (1974)

  28. O. Schwerer, M. Winkier-Rohatsch, G. Winkler, J. Opt. Soc. Am. A 113, 153 (1976)

    Google Scholar 

  29. K. Fukuda, K. Matsuo, S. Shirahama, I. Kumabe, In: Proc. NEANDC (J)-56/U, 44 (1978)

  30. B. Anders, B.M. Bahal, R. Pepelnik, Report No. GKSS-85-E-24 (1985)

  31. Y. Ikeda, C. Konno, K. Oishi, T. Nakamura, H. Miyade, K. Kawade, H. Yamamoto, T. Katoh, Report No. JAERI-1312 (1988)

  32. M. Ibn Majha, S.M. Qaim, Nucl. Sci. Eng. 104, 271 (1990)

    Article  Google Scholar 

  33. H. Lu, W. Zhao, W. Yu, Chin. J. Nucl. Phys. 13(1), 11 (1991)

    Google Scholar 

  34. P. Raics, S. Nagy, S. Szegedi, N.V. Kornilov, A.B. Kagalenko, Conf. Proc. 91 Julich, 660 (1991)

    Google Scholar 

  35. Z. Pu, Z. Xuebin, K. Xiangzhong, J. Lanzhou Univ. Nat. Sci. Ed. Chinese)39, 107 (2003). (Chinese)

    Google Scholar 

  36. A.A. Filatenkov, Report No. INDC (CCP)-0460 (2016)

  37. C.H. Reed, Report No. TID-11929 (1960)

  38. R.J. Prestwood, B.P. Bayhurst, Phys. Rev. 121, 1438 (1961)

    Article  ADS  Google Scholar 

  39. R. Rieder, H. Muenzer, Progree Report EANDC (OR)-38,1 (1965)

  40. B. Minetti, A. Pasquarelli, Nucl. Phys. A 118, 449 (1968)

    Article  ADS  Google Scholar 

  41. A. Abboud, P. Decowski, W. Grochulski, A. Marcinkowski, J. Piotrowski, K. Siwek, J. Wilhelmi, Nucl. Phys. A 139, 42 (1969)

    Article  ADS  Google Scholar 

  42. L. Husain, A. Bari, P.K. Kuroda, Phys. Rev. C 1, 1233 (1970)

    Article  ADS  Google Scholar 

  43. Y. Kanda, Nucl. Phys. A 185, 177 (1972)

    Article  ADS  Google Scholar 

  44. R.A. Sigg, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 631 (1975)

    Article  Google Scholar 

  45. P.K. Eapen, G.N. Salaita, J. Inorg. Nucl. Chem. 37, 1121 (1975)

    Article  Google Scholar 

  46. B.P. Bayhurst, J.S. Gilmore, R.J. Prestwood, J.B. Wilhelmy, N. Jarmie, B.H. Erkkila, R.A. Hardekopf, Phys. Rev. 12, 451 (1975)

    Article  ADS  Google Scholar 

  47. K. Sailer, S. Daroczy, P. Raics, S. Nagy, in Proceedings of 4th All Union Conf. on Neutron Physics, 18-22 Apr 1977, Kiev, USSR, Vol 1, p 246 (1977)

  48. Y. Fujino, M. Hyakutake, I. Kumabe Pro. Report. No. NEANDC(J)-51, 60 (1977)

  49. S. Sothras, Tecn. Report. No. SOTHRAS (1977)

  50. A. Pavlik, G. Winkler, H. Vonach, A. Paulsen, H. Liskien, J. Phys. G 8, 1283 (1982)

    Article  ADS  Google Scholar 

  51. J. Csikai, in Proceedings of the International Conference of Nuclear Data for Science and Technology, 6-10 September 1982, Antwerp, Belgium, p 414 (1982)

  52. Y. Ikeda, H. Miyade, K. Kawade, H. Yamamoto, Workshop-IKEDA (1984)

  53. Z. Wenrong, L. Hanlin, F. Peiguo, Chin. Nucl. Phys. 6(1), 80 (1984)

    Google Scholar 

  54. M. Herman, A. Marcinkowski, Workshop. Report. No. Marcinkowski (1984)

  55. T. Iguchi, K. Nakata, M. Nakazawa, Nucl. Ssi. Tech. 24(12), 1076 (1987)

    Article  Google Scholar 

  56. N.I. Molla, R.U. Miah, M. Rahman, A. Akhter, in Proceedings of the International Conference of Nuclear Data for Science and Technology, 13-17 May 1991, Juelich, Germany, p 355 (1991)

  57. Y. Ikeda, C. Konno, M. Mizumoto, K. Hasegawa, S. Chiba, Y. Yamanouchi, M. Sugimoto, in Proceedings of the International Conference of Nuclear Data for Science and Technology, 13-17 May 1991, Juelich, Germany, p 294 (1991)

  58. K.T. Osman, F.I. Habbani, Report. No. INDC(SUD)-001 (1996)

  59. A.A. Filatenkov, S.V. Chuvaev, V.A. Yakovlev, A.V. Malyshenkov, S.K. Vasil’ev, Report No. RI-252 (1999)

  60. F.M.D. Attar, R. Mandal, S.D. Dhole, A. Saxena, S. Ashokkumar, S. Ganesan, V.N. Bhoraskar. Kailas, Nucl. Phys. A 802, 1 (2008)

    Article  ADS  Google Scholar 

  61. V. Semkova, E. Bauge, A.J.M. Plompen, D.L. Smith, A. Moens, R.J. Tornin, V. Avrigeanu, P. Reimer, S. Sudar, A. Koning, R. Forrest, Nucl. Phys. A 832(3–4), 149 (2010)

    Article  ADS  Google Scholar 

  62. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113 (2012) 2841, TALYS-1.95 (http://tendl.web.psi.ch/tendl_2019/talys.html). Accessed 28 Dec 2019

  63. H. Naik, G.N. Kim, K. Kim, M. Zaman, M. Nadeem, M. Sahid, Nucl. Phys. A 970, 156 (2018)

    Article  ADS  Google Scholar 

  64. J.S. Hendricks, W.M. Gregg, L.F. Michael, R.J. Michael, C.J. Russell, W.D. Joe, P.F. Joshua, B.P. Denise, S.W. Laurie, W.M. William, MCNPX 2.6.0 Extensions, LANL Report LA-UR-08-2216, Los Alamos, 2008, http://mcnpx.lanl.gov/

  65. NuDat 2.8, National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/nudat2/

  66. E. Browne, R. B. Firestone, in Table of Radioactive Isotopes, edited by V. S. Shirley (Wiley & Sons, New York, 1986)

  67. Calculator and Graph Engine for Atomic Nuclei parameters and Nuclear Reactions and Radioactive decays (2010), http://cdfe.sinp.msu.ru/

  68. N.V. Kornilov, A.B. Kagalenko, V.Y. Baryba, S. Daróczy, J. Csikai, Z. Papp, Z. Schram, Phys. Rev. C 39, 789 (1989)

    Article  ADS  Google Scholar 

  69. W. Mannhart, D. Schmidt, Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV, Physikalisch-Technische Bundesanstalt, Braunschweig (Germany) Neutronenphysik, PTB Report PTB-N-53 (2007)

  70. R. Coszach, P. Duhamel, W. Galster, P. Jean, P. Leleux, J.-P. Meulders, J. Vanhorenbeeck, G. Vedrenne, P.V. Ballmoos, Phys. Rev. C 61, 64615 (2001)

    Article  Google Scholar 

  71. Y. Uwamino, H. Sugita, Y. Kondo, T. Nakamura, Nucl. Sci. Eng. 111, 391 (1992)

    Article  Google Scholar 

  72. Lu. Han-Lin, W. Da-Hai, X. Yi-Jun, C. Yun-Fen, G. C. Pao-Lin, High Energy Phys. Nucl. Phys. 3, 88 (1979)

    Google Scholar 

  73. K. Kudo, T. Michikawa, T. Kinoshita, Y. Hino, Y. Kawada, Cross section measurements of \(^{56}\)Fe(n, p)\(^{56}\)Mn and \(^{27}\text{Al}(\text{ n },\ \upalpha )^{24}\text{ Na }\) between 14.0 and 19.9 MeV, Nuclear Standard Reference Data, INIS Volume 16, Ref. Number 16079869 (1985)

  74. A.B.M.G. Mostafa, Nucl. Sci. Appl. B 9, 10 (1976)

    Google Scholar 

  75. J.P. Butler, D.C. Santry, Can. J. Phys. 41, 372 (1963)

    Article  ADS  Google Scholar 

  76. J.M.F. Jeronymo, G.S. Mani, J. Olkowsky, A. Sadeghi, C. Williamson, Nucl. Phys. 47, 157 (1963)

    Article  Google Scholar 

  77. G.S. Mani, G.J. McCallum, A.T.G. Ferguson, Nucl. Phys. 19, 535 (1960)

    Article  Google Scholar 

  78. J. Vrzalová, O. Svoboda, A. Krása, A. Kugler, M. Majerle, M. Suchopar, V. Wagner, Nucl. Instrum. Methods A 726, 84 (2013)

    Article  ADS  Google Scholar 

  79. M. Zaman, G.N. Kim, K. Kim, H. Naik, Y.-O. Lee, Y.-S. Cho, M.W. Lee, Y.-R. Kang, Radiochim. Acta 105, 593 (2017)

    Article  Google Scholar 

  80. H. Naik, G.N. Kim, K. Kim, M. Nadeem, M. Sahid, Eur. Phys. J. Plus 135(9), 704 (2020)

    Article  Google Scholar 

  81. F.D. Schupp, C.B. Colvin, D.S. Martin Jr., Phys. Rev. 113, 1095 (1959)

    Article  ADS  Google Scholar 

  82. H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, S.C. Yang, M.W. Lee, S.G. Shin, Y. Kye, R. Massavczyh, R. John, A. Junghans, A. Wagner, A. Goswami, M.-H. Cho, Eur. Phys. J. A 50, 83 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the staff of the MC-50 Cyclotron in the Korea Institute of Radiological and Medical Sciences (KIRAMS) for the excellent operation and their support during the experiment. This research was partly supported by the National Research Foundation of Korea through a grant provided by the Ministry of Science and ICT (NRF-2017R1D1A1B03030484, NRF-2013M7A1A1075764, NRF-2018R1A6A1A06024970, and NRF-2019H1D3A2A01102637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Additional information

Communicated by Takashi Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G., Kim, K. et al. Measurement of cross sections of Zr-isotopes with the fast neutrons based on the \(^9\)Be(p, n) reaction. Eur. Phys. J. A 57, 267 (2021). https://doi.org/10.1140/epja/s10050-021-00568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00568-8

Navigation